Supporting information for

Rhodamine 6G hydrazone with coumarin unit: a novel single-molecule

multianalyte (Cu²⁺ and Hg²⁺) sensor at different pH value

Zhou-Qing Xu, Xian-Jie Mao, Yuan Wang*, Wei-Na Wu*, Pan-Dong Mao, Xiao-Lei Zhao, Yun-

Chang Fan, Hui-Jun Li*

Fig. S1 The influence of tested ions on the fluorescence intensity ratio at 550 and 498 nm (F₅₅₀/F₄₉₈) of

RC1 in CH₃CN/H₂O (9/1, v/v, pH = 7.4) solution, excitation wavelength was 445 nm.

Fig. S2 The overlap (shown with vertical stripes) between emission and absorption spectra of the

donor and acceptor, respectively.

Fig. S3 Normalized response of fluorescence ratio calibration value ($R=F_{550}/F_{498}$) for RC1 as a function

of Cu^{2+} concentration in CH_3CN/H_2O (9/1, v/v, pH = 7.4) solution.

Fig. S4 Normalized response of fluorescence calibration value (intensity at 498 nm) for RC1 as a function of Hg^{2+} concentration in CH₃CN/H₂O (9/1, v/v, pH = 10.0) solution.

Fig. S5 Job plots of RC1 and Hg²⁺ in CH₃CN/H₂O (9/1, v/v, pH = 10.0) solution. The total concentration of RC1 and Hg²⁺ were all kept at 5 μ M.

Fig. S6 The Benesi-Hildebrand plot of the RC1-Hg²⁺ complex based on fluorescence intensity at 498 nm.

Fig. S7 ESI-MS spectrum of the sensor RC1 with Cu^{2+} in CH_3CN solution.

Fig. S8 ESI-MS spectrum of the sensor RC1 with Hg^{2+} in CH_3CN solution.

Fig. S9 Partion of ¹H NMR spectrum of the sensor RC1 with and without Hg^{2+} in DMSO- d_6 solution.

Fig. S10 The effect of pH (2.0-11.0) on the fluorescence ratio (F_{550}/F_{498}) of 5 μ M probe RC1 with 5 equiv. Cu²⁺ in CH₃CN/H₂O (9/1, v/v, pH = 7.4) solution.

Fig. S11 The effect of pH (2.0-11.0) on the relative fluorescence intensity of 5 μ M probe RC1 with 5

equiv. Hg^{2+} in CH_3CN/H_2O (9/1, v/v, pH = 10.0) solution.

Fig. S12 The effect of 5 equiv. coexistent metal cations on the relative fluorescence intensity of 5 μ M RC1 with 5 equiv. Cu²⁺ in CH₃CN/H₂O (9/1, v/v, pH = 7.4) solution.

Fig. S13 The effect of 5 equiv. coexistent metal cations on the relative fluorescence intensity of 5 μM

RC1 with 5 equiv. Hg^{2+} in CH_3CN/H_2O (9/1, v/v, pH = 10.0) solution.

Fig. S14 Time course for the fluorescence ratio change (F_{550}/F_{498}) of 5 μ M RC1 upon the addition of 5.0 equiv. Cu²⁺ in CH₃CN/H₂O (9/1, v/v, pH = 7.4) solution at room temperature.

Fig. S15 Time course for the fluorescence response at 498 nm of 5 μ M RC1 upon the addition of 5.0 equiv. Hg²⁺ in CH₃CN/H₂O (9/1, v/v, pH = 10.0) solution at room temperature.

Fig. S16 Fluorescence response of Cu^{2+} ions (5 eq.) to the sensor RC1 (5 μ M) with and without Na₂EDTA (5 eq.) in CH₃CN/H₂O (9/1, v/v, pH = 10.0) solution.

Fig. S17 Fluorescence intensity changes (490 nm) of RC1 (5 μ M) upon alternating addition of Hg²⁺ (5 eq.)/EDTA (5 eq.) in CH₃CN/H₂O (9/1, v/v, pH = 10.0) solution.

Fig. S18 ¹H NMR spectrum of RC1 in DMSO-*d*₆ solution.

Fig. S19 ESI-MS spectrum of RC1 in CH_3CN solution.