Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Support Information

A Ternary Composite with Manganese Dioxide Nanorods and Graphene Nanoribbons Embedded in Polyaniline Matrix for High-Performance Supercapacitors

Tong Wu^{*a*}, Chaonan Wang^{*b*}, Yao Mo^{*a*}, Xinran Wang^{*a*}, Jinchen Fan^{*a*}*, Qunjie Xu^{*a*}* and Yulin Min^{*a*}*

^a Shanghai Key Laboratory of Materials Protection and Advanced Materials in

Electric Power, College of Environmental and Chemical Engineering, Shanghai

University of Electric Power, Shanghai 200090, People's Republic of China.

^bCollege of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, People's Republic of China.

* Corresponding authors. E-mail address: Jinchen.fan@shiep.edu.cn (J.C. Fan),_ xuqunjie@shiep.edu.cn (Q.J. Xu), minyulin@shiep.edu.cn (Y.L. Min) Tel: +86 21 35303544 Fax: +86 21 35303544

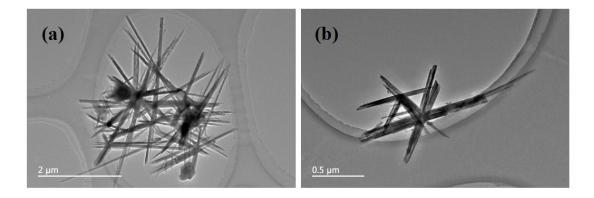


Fig. S1 Selected TEM images of as-prepared MnO₂ nanorods

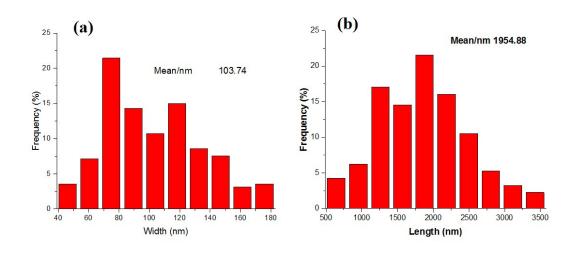
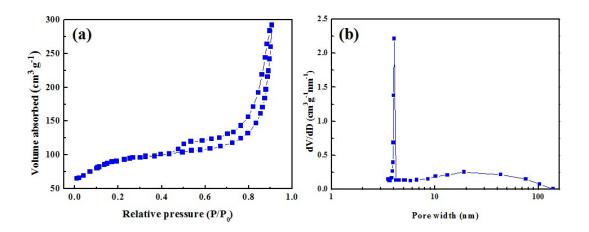



Fig.S2 Width (a) and length (b) distributions of as-prepared MnO₂ nanorods

Fig.S3 (a) N₂ adsorption/desorption isotherms and (b) pore size distribution curves of the MnO₂/PANI/GNRs ternary composite