## Highly active and porous single-crystal $In_2O_3$ nanosheet for excellent-response $NO_x$ gas sensor at room temperature

Li Sun,<sup>a,b</sup> Wencheng Fang,<sup>a</sup> Ying Yang,<sup>a\*</sup> Hui Yu,<sup>a</sup> Tingting Wang<sup>a</sup>, Xiangting Dong,<sup>a\*</sup> Guixia Liu,<sup>a</sup> Jinxian Wang,<sup>a</sup> Wensheng Yu,<sup>a</sup> Keying Shi<sup>c\*</sup>

<sup>a</sup> Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022

E-mail address: yangying0807@126.com (Y. Yang); dongxiangting888@163.com (X. T. Dong); Fax: +86 0431 85383815; Tel: +86 0431 85582574.

<sup>b</sup> College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R.

<sup>c</sup> Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, P. R. shikeying2008@163.com (K. Y. Shi);



Figure S1. TG-DSC analyses of In(OH)<sub>3</sub> precursors



Figure S2. The TEM images of the synthesized  $In_2O_3$  with 0.6 g  $In(NO_3)_3$ .



Figure S3. The TEM images of the synthesized  $In_2O_3$  with 0.8 g  $In(NO_3)_3$ .



Figure S4. The TEM images of the synthesized  $In_2O_3$  with 1.2 g  $In(NO_3)_3$ .

|  |                                     |                  | •                                  | -         |
|--|-------------------------------------|------------------|------------------------------------|-----------|
|  | Sample                              | S <sub>BET</sub> | pore volume                        | pore size |
|  |                                     | (m² g-1)         | (cm <sup>3</sup> g <sup>-1</sup> ) | (nm)      |
|  | In <sub>2</sub> O <sub>3</sub> -0.6 | 50.99            | 0.53                               | 34.73     |
|  | In <sub>2</sub> O <sub>3</sub> -0.7 | 52.89            | 0.47                               | 36.10     |
|  | In <sub>2</sub> O <sub>3</sub> -0.8 | 65.70            | 0.27                               | 18.07     |
|  | In <sub>2</sub> O <sub>3</sub> -0.9 | 44.85            | 0.28                               | 25.51     |
|  | In <sub>2</sub> O <sub>3</sub> -1.0 | 41.09            | 0.29                               | 28.89     |
|  | In <sub>2</sub> O <sub>3</sub> -1.2 | 36.33            | 0.16                               | 21.21     |
|  |                                     |                  |                                    |           |

Table S1 The results of the surface area, pore volume and pore size.

| Response (R_N-R_0)/R_0Sample97.048.5 ppm29.1 ppm9.704.85 ppm0.970.485 ppmppmppmppmppmppmppmln_2O_3-0.714.4513.109.1511.494.212.522.46ln_2O_3-0.820.3713.488.423.52.240.77ln_2O_3-0.989.4880.2675.1245.4922.7211.984.77ln_2O_3-1.014.8813.5911.6212.178.867.951.67ln_2O_3-1.217.009.997.365.395.062.151.73 |                                                           |       |          |          |       |          |       |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------|----------|----------|-------|----------|-------|-----------|
| Sample97.048.5 ppm29.1 ppm9.704.85 ppm0.970.485 ppmppmppmppmppmppmppmln2O3-0.714.4513.109.1511.494.212.522.46ln2O3-0.820.3713.488.423.52.240.77ln2O3-0.989.4880.2675.1245.4922.7211.984.77ln2O3-1.014.8813.5911.6212.178.867.951.67ln2O3-1.217.009.997.365.395.062.151.73                                 | Response (R <sub>N</sub> -R <sub>0</sub> )/R <sub>0</sub> |       |          |          |       |          |       |           |
| ppmppmln2O3-0.714.4513.109.1511.494.212.522.46ln2O3-0.820.3713.488.423.52.240.77ln2O3-0.989.4880.2675.1245.4922.7211.984.77ln2O3-1.014.8813.5911.6212.178.867.951.67ln2O3-1.217.009.997.365.395.062.151.73                                                                                                | Sample                                                    | 97.0  | 48.5 ppm | 29.1 ppm | 9.70  | 4.85 ppm | 0.97  | 0.485 ppm |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                     |                                                           | ppm   |          |          | ppm   |          | ppm   |           |
| In2O3-0.8 20.37 13.48 8.42 3.5 2.24 0.77    In2O3-0.9 89.48 80.26 75.12 45.49 22.72 11.98 4.77   In2O3-1.0 14.88 13.59 11.62 12.17 8.86 7.95 1.67   In2O3-1.2 17.00 9.99 7.36 5.39 5.06 2.15 1.73                                                                                                         | In <sub>2</sub> O <sub>3</sub> -0.7                       | 14.45 | 13.10    | 9.15     | 11.49 | 4.21     | 2.52  | 2.46      |
| In2O3-0.9 89.48 80.26 75.12 45.49 22.72 11.98 4.77   In2O3-1.0 14.88 13.59 11.62 12.17 8.86 7.95 1.67   In2O3-1.2 17.00 9.99 7.36 5.39 5.06 2.15 1.73                                                                                                                                                     | In <sub>2</sub> O <sub>3</sub> -0.8                       | 20.37 | 13.48    | 8.42     | 3.5   | 2.24     | 0.77  |           |
| In2O3-1.014.8813.5911.6212.178.867.951.67In2O3-1.217.009.997.365.395.062.151.73                                                                                                                                                                                                                           | In <sub>2</sub> O <sub>3</sub> -0.9                       | 89.48 | 80.26    | 75.12    | 45.49 | 22.72    | 11.98 | 4.77      |
| ln <sub>2</sub> O <sub>3</sub> -1.2 17.00 9.99 7.36 5.39 5.06 2.15 1.73                                                                                                                                                                                                                                   | In <sub>2</sub> O <sub>3</sub> -1.0                       | 14.88 | 13.59    | 11.62    | 12.17 | 8.86     | 7.95  | 1.67      |
|                                                                                                                                                                                                                                                                                                           | In <sub>2</sub> O <sub>3</sub> -1.2                       | 17.00 | 9.99     | 7.36     | 5.39  | 5.06     | 2.15  | 1.73      |

Table S2 The gas response of synthesized  $In_2O_3$  with different  $In(NO_3)_3$  addition for 97.0 ppm~0.485 ppm  $NO_x$  at room temperature.

|                                     | Response time (s) |          |          |       |          |       |           |
|-------------------------------------|-------------------|----------|----------|-------|----------|-------|-----------|
| Sample                              | 97.0              | 48.5 ppm | 29.1 ppm | 9.70  | 4.85 ppm | 0.97  | 0.485 ppm |
|                                     | ppm               |          |          | ppm   |          | ppm   |           |
| In <sub>2</sub> O <sub>3</sub> -0.7 | 27                | 74       | 182      | 292   | 27       | 182   | 230       |
| In <sub>2</sub> O <sub>3</sub> -0.8 | 20.6              | 20.6     | 16.6     | 20.0  | 27.3     | 27.3  |           |
| In <sub>2</sub> O <sub>3</sub> -0.9 | 16.6              | 24.0     | 27.3     | 36.0  | 38.6     | 39.3  | 59.3      |
| In <sub>2</sub> O <sub>3</sub> -1.0 | 11.33             | 74.0     | 79.3     | 72.6  | 133      | 136   | 400       |
| In <sub>2</sub> O <sub>3</sub> -1.2 | 17.3              | 422.0    | 470.0    | 492.6 | 320.0    | 130.0 | 203.3     |

Table S3 The response time of synthesized  $In_2O_3$  with different  $In(NO_3)_3$  addition for 97.0 ppm~0.485 ppm  $NO_x$  at room temperature.

|          | Material                                 | Operating<br>temperature | NO <sub>x</sub><br>Concentration<br>(ppm) | Response           | Lowest detectable<br>limit (ppm) |
|----------|------------------------------------------|--------------------------|-------------------------------------------|--------------------|----------------------------------|
| Our work | ps-In <sub>2</sub> O <sub>3</sub> NS     | Room temperature         | 0.485                                     | 4.77 <sup>a</sup>  | 0.485                            |
| [S1]     | Zn-doped In <sub>2</sub> O <sub>3</sub>  | 300 °C                   | 5                                         | 2.74 <sup>b</sup>  | 5                                |
| [S2]     | Pd-loaded In <sub>2</sub> O <sub>3</sub> | 110 °C                   | 5                                         | 9 <sup>b</sup>     | 5                                |
| [S3]     | Porous In <sub>2</sub> O <sub>3</sub>    | 250 °C                   | 50                                        | 164 <sup>b</sup>   | 1                                |
| [S4]     | In <sub>2</sub> O <sub>3</sub>           | 150 °C                   | 100                                       | 33.45 <sup>b</sup> | 5                                |
| [85]     | In <sub>2</sub> O <sub>3</sub> -rGO      | Room temperature         | 30                                        | 8.25 <sup>b</sup>  |                                  |

Table S4 The gas sensing performance of  $In_2O_3$  sensors to  $NO_x$  gas.

<sup>a</sup>Response =  $(R_g - R_a)/R_a$ ; <sup>b</sup>Response=  $R_g/R_a$ , where  $R_g$  and  $R_a$  are the resistance values of the sensor measured in the target gas and air, respectively.

S1. P. Li, H. Q. Fan, Y. Cai, M. M. Xu, C. B. Long, M. M. Li, S. H. Lei and X. W. Zou, RSC Adv., 2014, 4, 15161.

S2. M. Q. Huang, Z. D. Cui, X. J. Yang, S. L. Zhu, Z. Y. Li and Y. Q. Liang, RSC Adv., 2015, 5, 30038.

S3. L. P. Gao, Z. X. Cheng, Q. Xiang, Y. Zhang and J. Q. Xu, Sens. Actuators, B, 2015, 208, 436.

S4. S. P. Patil, V. L. Patil, S. S. Shendage, N. S. Harale, S. A. Vanalakar, J. H. Kim and P. S. Patil, Ceram. Int., 2016, 42, 16160.

S5. F. B. Gu, R. Nie, D. M. Han and Z. H. Wang, Sensor. Actuat. B., 2015, 219, 94.