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Fig. S1 Zeta potential measurement for the nanocomposites of CoOx and GO at different 
ratios.

Fig. S2 Diffraction patterns for (a) Co3O4 NP/rGO, (b) Co3O4 NR/rGO and (c) Co3O4 
NP/NGO samples. The values indicate the diameters for the ring that corresponds to 
2/d-spacing. 
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Fig. S3 TGA results for the HNCs of pure GO, NR/rGO and NP/rGO.

Fig. S4 TEM image of NR/rGO before heating



Fig. S5 SEM images for the nanocomposites of CoOx and GO at different ratios.



Laser-induced breakdown spectroscopy (LIBS) has been used for quantitative 

compositional analysis of NP/NGO and NP/rGO. Specifically, the weight ratios of cobalt 

oxides to carbon Co3O4:C were obtained using an internal calibration technique 1-3. 

Using the previous study set-up 3, the atomic emissions from cobalt and carbon were 

collected the quantitative analysis. Based on the relative lines strength, and transition 

probabilities, C I (247.86nm) and Co I (345.35nm) were chosen from the NIST Atomic 

Energy Levels Data Center 4 (Table S2). Fig. S6 shows the resolved emissions from 

NGO at 3.5us and 4us respectively. Based on the internal calibration method 1-3, the 

elemental ratio for NP/NGO is calculated as:

s3.5=GD@

s4=GD@

]NN[

]NN[
=

[C]
[Co]=R IC

i
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Where Ni
X represents the population density of species X. Therefore, the Co3O4:C weight 

ratio for NP/NGO and NP/rGO is estimated to be 3:1. Similarly, the Co3O4/C for NR/rGO 

is obtained as 3:2.



(a)

(b)

Fig. S6 Spectral emission signature for NP/NGO at (a) C I (247.86 nm), and (b) Co I 
(345.35 nm) lines at the respective gate delays of 3.5 μs, and 4 μs (Spectral details 
provided in Table S2). Inset shows the linear Boltzmann plots generated from Co I lines 
listed in Table S3, and used for Texc calculations at the respective gate delays of 3.5 μs 
and 4 μs.



(a)

(b)

Fig. S7 Spectral emission signature for NR/rGO at (a) C I (247.86 nm), and (b) Co I 
(345.35 nm) lines at the respective gate delays of 3.5 μs, and 4 μs (Spectral details 
provided in Table S2). Inset shows the linear Boltzmann plots generated from Co I lines 
listed in Table S3, and used for Texc calculations at the respective gate delays of 3.5 μs 
and 4 μs.
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Fig. S8 FTIR results for NP/rGO (RT) and NP/NGO.

Fig. S9 equivalent circuit for the EIS results shown in Fig. 8.d.



Table S1 Comparison of the d-spacing of the as-synthesized products with standard 
values.

NP/rGO NR/rGO NP/NGO
2.86 (220) 2.86 2.86 2.85
2.44 (311) 2.44 2.44 2.42
2.02 (400) 2.01 2.02 2.01
1.56 (333) 1.57 1.55 1.55
1.43 (440) 1.44 1.44 1.43

Standard
Co3O4 d-

spacing (A)

Experimental d-spacing (A)

Table S2.  Atomic spectral database4 for the C I and Co I spectral emission lines shown 
in Fig. S6 & S7, and used for the population calculation for rGO and NGO.

Upper energy
level

Lower
energy level

(eV) (eV)
C I 247.86 28 7.684 2.684 3 1
Co I 345.35 110 4.026 0.432 12 10

Element Wavelength
(nm)

Transition
probability

(106 1/s)
gk gi

Table S3.  Atomic spectral database4 for Co atomic transition lines used for the plasma 
temperature calculations at 3.5µs and 4us, and internal calibration.

Element Wavelen
gth (nm)

Transition
probability

(106 1/s)

Upper
energy

level (eV)

Lower
energy

level (eV)
gk gi

Co I 240.73 360 5.148 0 12 10
Co I 344.36 69 4.112972 0.513624 8 8
Co I 345.35 110 4.020881 0.431815 12 10
Co I 350.228 80 3.970904 0.431815 8 10
Co I 352.68 13 3.514 0 10 10
Co I 356.93 150 4.395 0.923 8 8
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