Electronic Supplementary Information: Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as *T*₂ contrast agents for high-field MRI

Abhinandan Banerjee, ^a Barbara Blasiak, ^b Eva Pasquier, ^{a,c} Boguslaw Tomanek, ^{b,d} and Simon Trudel ^{*a}

^a Department of Chemistry and Institute for Quantum Science and Technology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4; ^b Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1 and Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego, Krakow, 31-342, Poland; ^c École Européenne de Chimie, Polymères et Matériaux de Strasbourg (ECPM), 25 Rue Becquerel, 67087 Strasbourg, France; ^d Oncology Department, University of

Alberta, 8303-112 St., Edmonton, AB T6G 2T4

I, 8303-112 SI., EUIII0III0II, AB 10

E-mail: trudels@ucalgary.ca

Sample	MX ₂	X ₂ Amount (mmoles)		
$\begin{array}{c} \text{CoFe}_2\text{O}_4\\ \text{Fe}_3\text{O}_4\\ \text{MnFe}_2\text{O}_4\\ \text{NiFe}_2\text{O}_4\\ \text{ZnFe}_2\text{O}_4\\ \text{CuFe}_2\text{O}_4 \end{array}$	Co(acac) ₂ Fe(acac) ₃ Mn(acac) ₂ Ni(acac) ₂ Zn(acac) ₂ CuCl ₂ .2H ₂ O	0.67 2.0 ^{<i>a</i>} 0.67 0.67 0.67 0.67 ^{<i>b</i>}		

^{*a*} Fe(acac)₃ serves as a source of both Fe(II) and Fe(III).

 $^{\it b}$ See discussion in the main paper and references therein.

Table S1 Source of the divalent cation in the synthesis of PEGylated MFe₂O₄ NPs

Sample	$M_{\rm s}, 1.9 { m K}$ (emu g ⁻¹)	$M_{\rm s}$, 300 K (emu g ⁻¹)	<i>Т</i> В (К)	$(\text{mM}^{-1} \text{ s}^{-1})$	$(\text{mM}^{-1} \text{ s}^{-1})$	r_2/r_1
CoFe ₂ O ₄	52.8	33.7	280	$0.45{\pm}0.04$	99±14	219
Fe ₃ O ₄	42.8	33.4	150	$0.80{\pm}0.07$	$75{\pm}12$	94
$MnFe_2O_4$	59.9	35.9	47	$0.69{\pm}0.02$	$118{\pm}20$	171
NiFe ₂ O ₄	38.1	32.3	150	$0.78{\pm}0.01$	36±4	46
$ZnFe_2O_4$	35.4	19.1	32	$0.60{\pm}0.02$	49±5	82
CuFe ₂ O ₄	30.7	23.2	400	$1.21{\pm}0.16$	34±2	28

Table S2 Summary of magnetometric and relaxometric measurements on PEGylated MFe₂O₄ NPs

Fig. S1 Transmission electron micrographs of PEGylated MFe₂O₄ NPs and derived size distributions.

Fig. S2 Fourier Transform Infrared Spectra for MFe₂O₄-PEG₄₀₀ NPs (M= Co, Ni, Cu, Zn, Fe).

Fig. S3 Measured magnetization versus field strength curves for all powdered samples at (a) 300 K and (b) 1.9 K.

The $T_{\rm B}$ of our NiFe₂O₄ NPs was found to be ~ 150 K. The $M_{\rm s}$ of 32.3 emu g⁻¹ recorded for our NiFe₂O₄ NPs was smaller than the reported value of ~ 55 emu g⁻¹ for bulk NiFe₂O₄. ⁴⁵ This $M_{\rm s}$ value also fell in the range (25.7 to 40 emu g⁻¹) reported by Menelaou *et al.* in their report on oleylamine-coated 9-11.7 nm NiFe₂O₄ NPs. ⁶⁴

The 6 nm ZnFe₂O₄ NPs showed M_s values of 35.4 emu g⁻¹ and 19.1 emu g⁻¹ at 1.9 and 300 K, respectively. The T_B for these NPs was found to be \sim 33 K, which is very close to the value reported by Chen and co-workers for sub-10 nm ZnFe₂O₄ NPs.⁶⁸

The magnetite NPs show a blocking temperature $T_{\rm B}$ of approx. 120 K, and a saturation magnetization $M_{\rm s}$ of 33.4 emu g⁻¹ at 300 K, and 42.8 emu g⁻¹ at 1.9 K, under a 4-T field. As noted in several reports on the magnetic properties of ferrite NPs, this low $M_{\rm s}$ value (*c.f.* the $M_{\rm s}$ of bulk Fe₃O₄ is ~ 92 emu g⁻¹) is again consistent with the presence of a magnetically disordered (*i.e.* non-magnetic) iron oxide surface layer. We had noted in a previous communication³⁰ that lower synthesis temperatures lead to poor crystallinity and lowered magnetization of Fe₃O₄ NPs. More magnetic Fe₃O₄ NPs were indeed formed here at higher reaction temperatures.

The CuFe₂O₄-PEG₄₀₀ NPs showed M_s values of 30.7 emu g⁻¹ and 23.2 emu g⁻¹ at 1.9 and 300 K; these are in accordance with values reported in the literature.⁶⁹

Fig. S4 FC-ZFC curves for MFe_2O_4 -PEG₄₀₀ NPs (M= Co, Ni, Cu, Zn, Fe).

Fig. S5 Relaxometric plots for MFe_2O_4 -PEG₄₀₀ NPs (M= Co, Ni, Cu, Zn, Fe) at 9.4 T.

Fig. S6 Relaxivities and r_2 / r_1 as a function of saturation magnetisation. Lines are guides to the eyes.

Fig. S7 Comparison of r_2 / r_1 values for various high-field NP contrast agents. Labels refer to Table 2.