Supporting Information

Photoluminescence and electroluminescence of deep red iridium(III) complexes with 2,3-diphenylquinoxaline derivatives and 1,3,4-oxadiazole derivatives ligands

Yi-Ming Jing,^a You-Xuan Zheng^{a,b*}

^a State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of

Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China

^b MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan, 238200, P. R. China

Table S1. Parameters associated with the single crystal diffraction data collection for Ir1 and Ir3.

	Ir1	Ir3
Formula	C ₅₄ H ₃₅ IrN ₆ O ₂	C ₅₄ H ₃₁ F ₄ IrN ₆ O ₂
Formula weight	992.08	1064.05
Т (К)	293(2)	296(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ /c	<i>C</i> 2/c
a (Å)	11.3469(19)	29.928(10)
b (Å)	31.314(5)	18.643(6)
<i>c</i> (Å)	13.335(2)	22.998(2)
α (deg)	90	90
β (deg)	110.451(3)	135.639(5)
γ (deg)	90	90
$V(Å^3)$	4439.4(13)	8972(5)
Ζ	4	8
ρ_{caled} (g/cm ³)	1.484	1.575
μ (Mo K α) (mm ⁻¹)	3.057	3.043
F (000)	1976	4208
Range of transm factors (deg)	1.755-25.009	1.463-27.761
Reflns collected	24108	30648
Unique(R _{int})	7779(0.0657)	10389(0.0696)
$R_1^a, wR_2^b [I > 2s(I)]$	0.1040, 0.2567	0.0393, 0.0670
R_1^a , wR_2^b (all data)	0.1210, 0.2655	0.0755, 0.0778
GOF on F^2	1.133	0.930
CCDC number	1535471	1535473

 $R_{I}^{a} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma F_{o}|. \ wR_{2}^{b} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w(F_{o}^{2})]^{1/2}$

 ${\rm GOF} = [(\Sigma w | F_{\rm o}| - | F_{\rm c} |)^2 / (N_{\rm obs} - N_{\rm param})]^{1/2} \; . \label{eq:GOF}$

	Ir1	Ir3
Selected bonds	Bond length (Å)	Bond length (Å)
Ir(1)-C(1)	1.976(19)	1.985(4)
Ir(1)-C(21)	1.977(18)	1.992(5)
Ir(1)-N(1)	2.087(17)	2.069(3)
Ir(1)-N(3)	2.061(11)	2.068(4)
Ir(1)-N(5)	2.159(15)	2.139(4)
Ir(1)-O(1)	2.181(12)	2.148(3)
Selected angles	(°)	(°)
C(1)-Ir(1)-C(21)	91.2(7)	93.22(17)
C(1)-Ir(1)-N(1)	80.5(7)	79.50(16)
C(1)-Ir(1)-N(3)	99.8(6)	101.18(16)
C(1)-Ir(1)-N(5)	171.2(7)	171.78(15)
C(1)-Ir(1)-O(1)	88.3(6)	87.09(15)
C(21)-Ir(1)-N(1)	99.7(7)	94.69(16)
C(21)-Ir(1)-N(3)	79.4(6)	80.30(16)
C(21)-Ir(1)-N(5)	96.7(7)	95.00(15)
C(21)-Ir(1)-O(1)	178.8(7)	179.59(15)
N(1)-Ir(1)-N(3)	179.0(6)	174.96(14)
N(1)-Ir(1)-N(5)	94.5(6)	98.16(14)
N(1)-Ir(1)-O(1)	79.1(5)	79.13(13)
N(3)-Ir(1)-N(5)	85.3(5)	86.72(14)
N(3)-Ir(1)-O(1)	101.8(4)	100.22(13)
N(5)-Ir(1)-O(1)	83.7(5)	84.68(13)

Table S2. The table of selected bond lengths and angles of Ir1 and Ir3.

Table S3. Electrochemical data of Ir1, Ir2, Ir3 and Ir4.

Complex	$E_{\mathrm{ox}}\left(\mathbf{V}\right)^{a}$	$E_{\rm red}$ (V) ^{<i>a</i>}	HOMO (eV) ^b	LUMO (eV) ^c	$\lambda_{edge} (nm)^{d}$	$E_{\rm g}({\rm eV})^{\rm e}$
Ir1	0.626	-1.82	-5.26	-3.46	689	1.80
Ir2	0.726	-1.73	-5.36	-3.60	704	1.76
Ir3	0.700	-1.80	-5.33	-3.44	656	1.89
Ir4	0.820	-1.65	-5.45	-3.57	660	1.88

^{*a*} Oxidation and reduction potential measured in deaerated dichloromethane at 0.05 V/s, *tetra*-n-butylammonium hexafluorophosphate (0.1 M) was used as the supporting electrolyte.

^b The HOMO energy levels were calculated from the equation: HOMO (eV) = -($E_{ox} - E_{Fc}^+/_{Fc} + 4.8$).

^c The LUMO energy levels were calculated form the equation: LUMO = HOMO + E_g .

^d UV-vis absorption edge.

 $^{\rm e}$ The band gap ($E_{\rm g})$ was calculated from the equation: $E_{\rm g}=1240/\lambda_{\rm edge}$

Complex Orbital		Energy/eV	$E_{\rm gap}/{\rm eV}$	Composition (%)		
	Orbital	(Calculated)	(Calculated)	Ir	Main ligands	POP
	НОМО	-5.256	2.772	15.86	8.87	75.27
111	LUMO	-2.483		3.64	94.55	1.81
HOMO -5.334 Ir2 LUMO -2.605	НОМО	-5.334	2.720	15.17	8.48	76.35
	-2.605	2.728	3.69	94.57	1.74	
L-2	НОМО	-5.319	2.787	14.62	8.26	77.12
113	LUMO	-2.532		3.47	94.77	1.76
. .	НОМО	-5.396	0.540	14.17	8.04	77.79
1r4	LUMO	-2.653	2.743	3.51	94.80	1.69

Table S4. Percentage distributions of HOMO and LUMO in Ir1, Ir2, Ir3 and Ir4.

Fig. S1. The lifetime curves of (a) Ir1, (b) Ir2, (c) Ir3 and (d) Ir4 in degassed CH_2Cl_2 solution at a concentration of 5×10^{-5} mol·L⁻¹ at room temperature.

Fig. S2. Power efficiency-luminance (η_p -L) curves of devices (a) DS1 and DS2, (b) DD1 and DD2.

Fig. S3. PL spectra in neat and doped films of (a) Ir3 and (b) Ir4.

Table S5. Photoluminescence data of Ir3 and Ir4 in neat and doped films.

Complex	Neat film ^a	2 wt% doped in TcTa ^a	2 wt% doped in 26DCzPPy ^a
Ir3	656 nm	639 nm	639 nm
Ir4	654 nm	644 nm	641 nm

^{*a*} Excitation wavelength 388 nm for **Ir3** and 391 nm for **Ir4**.