Supporting Information for

Subphthalocyanine-Based Porous Organic Polymers

Grace M. Eder, Benjamin R. Walker, Psaras L. McGrier

Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio, 43210

Α.	Materials	S2
В.	Instrumentation and methods	S2
C.	Synthetic Methods	S3
D.	FT-IR Spectra	S 7
E.	Experimental PXRD Profiles	S12
F.	Solid State NMR Spectra	S13
G.	TGA Profiles	S14
Н.	BET Surface Area Plots and Pore Volume Calculations	S15
I.	UV-Vis Spectroscopy	S18
J.	SubPc-POP Hydrolysis ¹ H NMR Spectra	S22
К.	¹ H and ¹³ C NMR Spectra	S24

TABLE OF CONTENTS

A. Materials

Unless stated otherwise all reagents were purchased from commercial sources and used without further purification. Dioxane, mesitylene, 3-pentanone, and acetonitrile were distilled over CaH₂.

B. Instrumentation and Methods

Infrared spectra were recorded on a Thermo Scientific Nicolet iS5 with an iD7 diamond ATR attachment and are uncorrected.

UV-Vis absorbance spectra were recorded on a Cary 5000 UV-Vis/NIR spectrophotometer using an internal DRA with stock powder cell holder to record the % reflectance spectra. Emission spectra were recorded on a Cary Eclipse Fluorescence spectrophotometer equipped with a xenon flash lamp.

Surface area measurements were conducted on a Micromeritics ASAP 2020 Surface Area and Porosity Analyzer using ca. 15 mg samples. Nitrogen isotherms were generated by incremental exposure to ultra high purity nitrogen up to ca. 1 atm in a liquid nitrogen (77 K) bath. Surface parameters were determined using BET adsorption models in the instrument software. Pore size distributions were determined using the non-local density functional theory (NLDFT) model (cylinder pore, N₂-cylindrical pores-oxide surface with high regularization) in the instrument software (Micromeritics ASAP 2020 V4.02).

¹H NMR spectra were recorded in deuterated solvents on a Bruker Avance DPX 400 (400 MHz). Chemical shits are reported in parts per million (ppm, δ) using the solvent as the internal standard. ¹³C NMR spectra were recorded on a Bruker Avance DPX 400 (100 MHz) using the solvent as an internal standard.

C. Synthetic Methods

Scheme 1. Synthesis of 4,5-bis(triisopropylsilyloxy)phthalonitrile (4)

Compounds 5-9 have been synthesized previously by Torres et al.¹

Synthesis of 4,5-bis(triisopropylsilyloxy)phthalonitrile (4)

To a dry flask was added **5** (1.5 g, 9.36 mmol), imidazole (3.8 g, 56.2 mmol, 6 eq), DMAP (0.034 g, 0.28 mmol, 0.03 eq), and TIPSCI (8 mL, 7.22 g, 37.44 mmol, 4 eq). The mixture was degassed with N₂ while dry DMF (30 mL, 0.3 M)added via syringe. The mixture was further degassed with N₂ before submerging in a 55°C oil bath. The mixture was allowed to react for 24 h under N₂. After cooling, the mixture was quenched by pouring into saturated NH₄Cl solution. Product was extracted into ether, dried over Na₂SO₄ and reduced on the rotovap to a yellow oil. Overnight the oil yields needle shaped crystals, which were swamped with MeOH and cooled in the fridge before filtering, washing with additional MeOH. Product isolated in 82% yield as white needly solids. ¹H NMR (400 MHz CDCl₃) δ = 7.10 (s, 2H), 1.31 (m, 6H), 1.11 (d, 36H) ¹³C NMR (100 MHz CDCl₃) δ = 151.72, 123.77, 115.78, 108.29, 17.76, 13.04. HRMS (ESI-MS) *m/z* calculated for C₂₆H₄₄N₂O₂Si₂ [M+Na]⁺, 495.2834 Found 495.2835. IR (FT-IR, ATR): 2946, 2867, 2229, 1513, 1342 cm⁻¹. Melting point: 159-160 °C.

Scheme 2. Synthesis of hexahydroxy-SubPcs

Synthesis of 1a

To a dry 2 neck flask was added **4** (0.5 g, 1.05 mmol) and the flask was fitted with reflux condenser and septa. The apparatus was degassed with N_2 . BCl_3 (1.05 mL, 1.05 mmol, 1M solution in p-xylenes) was added to the solids at room

temperature under 1 ATM N₂. The mixture was submerged in a 150°C oil bath and allowed to react for 1 h. After cooling, solvents were removed via hivac. Product was extracted from the crude solids by grinding in a mortar and pestle, then washing with hexanes. The red filtrate was reduced on the rotovap. Product was separated by column chromatography (alumina, 1:1 hexanes:acetone) and further crashed out from hot DCM with acetonitrile. Solids filtered to yield the desired product in 16% yield as dark purple solids. ¹H NMR (400 MHz CDCl₃) δ = 8.16 (s, 6H), 1.51 (m, 18H), 1.19 (t, 108H) ¹³C NMR (100 MHz CDCl₃) δ = 151.14, 149.97, 125.04, 110.86, 17.99, 13.26. HRMS (ICR MALDI) *m/z* calculated for C₇₈H₁₃₂BCIN₆O₆Si₆ [M]⁺ 1462.82 Found 1463.86. IR (FT-IR, ATR): 2938, 2862, 1457, 1145 cm⁻¹. Melting point: 271 °C

Synthesis of 1b

CsF (0.429 g, 2.83 mmol, 18 eq) was added to a dried flask and held under N₂. Solutions of **1a** (0.23 g, 0.157 mmol) were created in acetone (~0.007 M), then added to the CsF via syringe. The mixture was degassed with N₂ briefly before heating in a 40°C oil bath overnight (~16 h). The mixture was further cooled in an ice bath before quenching with TFA (20 eq) and diluting with water. Volatile solvents removed via rotovap and solids were isolated via filtration, washing with water, DCM and hot hexanes. Product isolated in 68% yield as plum-colored solids. ¹H NMR (400 MHz D₆ acetone) δ = 9.03 (s, 6H), 8.13, (s, 6 H) ¹³C NMR (100 MHz D₆-acetone) δ = 149.94, 149.18, 124.17, 106.71. HRMS (ESI-MS) *m/z* calculated for C₂₄H₁₂BN₆O₆ [M-CI]⁺ 491.09 Found 491.09. IR (FT-IR, ATR): 3053, 1469, 1128, 1043 cm⁻¹. Melting point: 266 °C (decomposed without melting)

Synthesis of 2a

To a dry 3 neck flask was added 4 (0.5 g, 1.05 mmol), one neck fitted with an addition funnel, one with reflux condenser, and the third a septa. The addition funnel was loaded with phenol (0.98 g 10.5 mmol, 10 eq), and o-xylenes (10 mL, 1.05 M). The apparatus was capped and degassed with N₂. BCl₃ (1.05 mL, 1.05 mmol. 1M solution in p-xylenes) was added to the solids at room temperature under 1 ATM N₂. The mixture was submerged in a 150°C oil bath and allowed to react for 1 h before the phenol solution was added slowly to the hot mixture. The mixture was further heated while shielded from light overnight (~16h). After cooling, high boiling solvents were removed on rotovap and the dark residue was further dried on hivac. Product extracted from the crude solids by grinding in a mortar and pestle, then washing with hexanes. The red filtrate was reduced on rotovap, and the resulting residue was crashed out from minimal hot DCM with rt MeCN. The suspension was cooled in the fridge several hours before filtering to isolate solids. Product was isolated in 18% yield as a reddish-pink solid. ¹H NMR $(400 \text{ MHz CDCl}_3) \delta = 8.09 \text{ (s, 6H)}, 6.77 \text{ (t, 2H)}, 6.58 \text{ (t, 1H)} 5.42 \text{ (d, 2H)} 1.49 \text{ (m, 1H)}$ 18H) 6.58 (t, 108H) ¹³C NMR (100 MHz CDCl₃) δ =152.30, 150.67, 149.11,

127.74, 124.01, 119.62, 117.66, 109.74, 16.98, 12.24. MS (MALDI) m/z calculated for C₈₄H₁₃₇BN₆O₇Si₆ [M]⁺, 1522.35 Found 1522.11. IR (FT-IR, ATR): 2944, 2866, 1463, 1146 cm⁻¹. Melting point: 271 °C (decomposed without melting)

Synthesis of 2b

To a dry flask was added CsF (0.52 g, 3.43 mmol, 18 eq). The flask was capped and degassed with N₂. Solutions of **2a** (0.29 g, 0.19 mmol) in 5:1 acetone: hexanes (~0.007 M) were added to the flask via syringe under degassing conditions. The mixture was heated to 45°C under 1 ATM N₂ and allowed to react in the dark overnight (~16h). After cooling, low boiling solvents were removed via rotovap. The mixture was further diluted with water, and a few drops of 1M HCl were added to protonate. The mixture was filtered to isolate solids, which were further washed with water, DCM, and hot hexanes. Product was isolated in 70% yield as plum-colored solids. ¹H NMR (400 MHz D₆-acetone) δ = 9.09 (s, 6H), 8.16 (s, 6H), 6.74 (t, 2H), 6.56 (t, 2H), 5.33 (d, 2H) ¹³C NMR (100 MHz D₆acetone) δ = 153.58, 150.67, 148.46, 128.58, 125.02, 120.64, 118.97, 106.30. MS (MALDI) *m/z* calculated for C₃₀H₁₇BN₆O₇ [M]⁺, 584.30 Found 584.14. IR (FT-IR, ATR): 3196, 2946, 1474, 1143 cm⁻¹. Melting point: 254 °C (decomposed without melting)

Synthesis of **3a**

To a dry 3 neck flask was added 4 (0.5 g, 1.05 mmol), one neck fitted with an addition funnel, one with reflux condenser, and the third a septa. The addition funnel was loaded with pentafluorophenol (1.93 g, 10.5 mmol, 10 eq) and oxylenes (10 mL, 1.05 M). The apparatus was capped and degassed with N₂. BCl₃ (1M solution in p-xylenes) was added to the solids at room temperature under 1 atm N₂. The mixture was submerged in a 150°C oil bath and allowed to react for 1 h before the phenol solution was added slowly to the hot mixture. The mixture was further heated while shielded from light 2h. After cooling, high boiling solvents were removed on rotovap and the dark residue was further dried on hivac. Product extracted from the crude solids by grinding in a mortar and pestle, then washing with hexanes. The red filtrate was reduced on rotovap, and the resulting residue was crashed out from minimal hot DCM with rt MeCN. The suspension was cooled in the fridge several hours before filtering to isolate solids. Product was isolated in 28% yield as dark colored solids. ¹H NMR (400 MHz CDCl₃) δ = 8.10 (s, 6H), 1.49 (m, 18H), 1.17 (m, 108H) ¹³C NMR (100 MHz) $CDCl_3$) $\delta = 151.28$, 150.39, 124.96, 110.73, 17.99, 13.22. MS (MALDI) m/zcalculated for C₈₄H₁₃₂BF₅N₆O₇Si₆ [M]⁺, 1612.30 Found 1611.05. IR (FT-IR, ATR): 2945, 2868, 1467, 1149 cm⁻¹. Melting point: 284 °C (decomposed without melting)

Synthesis of **3b**

To a dry flask was added CsF (0.339 g, 2.23 mmol, 18 eq). The flask was capped and degassed with N₂. Solutions of **3a** (0.2 g, 0.124 mmol) in 5:1 acetone: hexanes (~0.007 M) were added to the flask via syringe under degassing conditions. The mixture was heated to 45°C under 1 atm N₂ and allowed to react in the dark overnight (~16h). After cooling, low boiling solvents were removed via rotovap. The mixture was further diluted with water, and a few drops of 1M HCl were added to protonate. The mixture was filtered to isolate solids, which were further washed with water, DCM, and hot hexanes. Product was isolated in 84% yield as plum-colored solids. ¹H NMR (400 MHz D₆-acetone) δ = 9.08 (br s, 6H), 8.08 (s, 6H) ¹³C NMR (100 MHz D₆-DMSO) δ = 169.85, 151.33, 150.19, 149.81, 125.19. 124.25, 109.82, 106.88. MS (MALDI) *m/z* calculated for C₃₀H₁₂BF₅N₆O₇ [M]⁺, 674.26 Found 674.07. IR (FT-IR, ATR): 3028, 1463, 1275, 1133, 986 cm⁻¹. Melting point: 239 °C (Decomposed without melting)

SubPc POP Synthesis (**SubPc-POP 1, 2**)

To a dry ampule was added **1b**, **2b**, or **3b** (0.03 mmol) and BDBA (0.05 mmol, 1.5 eq). Solvent mixture (0.05 M) was added, and the mixture was sonicated for 1 minute. Mixture was freeze-pump-thawed for 3 cycles before ampule was sealed under vacuum. The sealed ampule was placed in a closed oven for 3 d. POP powder was isolated by filtration. Powder was suspended in dry acetonitrile to remove residual monomers over a period of 2 days, periodically changing out the acetonitrile. Powder was dried on high vacuum ~8 h then degassed 12 h at 75 °C on the porosity analyzer. SubPc-POP 1: 17 mg, 67% yield. SubPc-POP-2: 17.4 mg, 58% yield.

R _{ax} =	Eq SubPc	Eq BDBA	Solvents	Time	Temp	Porosity
CI -	1	1.5	2:1 Diox:Mes	72 h	105 °C	Nonporous
	1	1.5	1:1 Diox:Mes	72 h	105 °C	Nonporous
	1	1.5	1:1 Diox:Mes	72 h	105 °C	231 m /g
OPh (POP-1)	1	1.5	1:2 Diox:Mes	72 h	120 °C	123 m /g
	1	1.5	1:2 Diox:Mes	72 h	95 °C	2 160 m /g
	1	1.5	1:1 Diox:Mes	72 h	120 °C	103 m /g
OF ₅ Ph (POP-2)	1	1.5	1:1 Pent:Mes	72 h	105 °C	66 m /g
	1	1.5	1:2 Pent:Mes	72 h	105 °C	93 m /g
	1	1.5	1:1 Pent:Mes	72 h	105 °C	24 m /g

 Table S1. Summary of SubPc-POP reaction screening conditions.

D. FT-IR Spectra

Figure S4. FT-IR spectrum of 2b

Figure S6. FT-IR spectrum of 3b

Figure S7. Stacked FT-IR spectra of SubPc-POP 1 (black, top), hexahydroxy OPh-SubPc (**2b**) (pink, middle), and BDBA (green, bottom).

Resonance	Assignment
1465 cm⁻¹	C=N
1347 cm ⁻¹	B-O (boronate ester)
1046 cm ⁻¹	B-O (axial ligand)

Table S2. Resonances and assignments for SubPc-POP 1

Figure S8. Stacked FT-IR spectra of SubPc-POP 2 (black, top), hexahydroxy F_5 OPh-SubPc (**3b**) (purple, middle), and BDBA (green, bottom).

Resonance	Assignment
1468 cm ⁻¹	C=N
1352 cm ⁻¹	B-O (boronate ester)
1039 cm ⁻¹	B-O (axial ligand)

Table S3. Resonances and assignments for SubPc-POP 2

E. PXRD Profiles

Figure S9. PXRD profile of SubPc-POP 1

F. Solid State NMR Spectra

Figure S11. ¹³C CP-MAS of SubPc-POP 1

Figure S12. ¹³C CP-MAS of SubPc-POP 2

G. TGA Profile

Figure S13. TGA profile of SubPc-POP 1

H. Surface Area Analysis

Figure S14. Roquerol BET analysis for SubPc-POP 1

Table 4. BET values derived from Roquerol BET analysis for SubPc-POP 1.

SubPc-POP 1				
(P/P°)	BET (m2/g)	Correlation Coefficient	С	
0.005939-0.139089	231	0.9999	321.478	
0.005939-0.106749	231	0.9998	320.559	
0.005939-0.084445	229	0.9997	339.447	

Figure S15. BET surface area plot for SubPc-POP 1

Figure S16. Roquerol BET analysis of SubPc-POP 2

Table 5. Bl	ET values derived	from Roquerol BF	T analysis for SubPc-P	OP 2
			1 411419515 101 0451 01	01 2.

SubPc-POP 2				
(P/P°)	BET (m2/g)	Correlation coefficient	С	
0.001086-0.200654	93	0.9988	136.591	
0.001086-0.167247	93	0.9981	139.102	
0.001086-0.133936	91	0.9977	170.091	

Figure S17. BET surface area plot for SubPc-POP 2

I. UV-Vis and Fluorescence

Figure S18. UV-Vis and fluorescence spectra of **1a** in toluene ($\lambda_{\text{excitation}}$ =574 nm).

Figure S19. UV-Vis and fluorescence spectra of **1b** in acetone ($\lambda_{\text{excitation}}$ = 564 nm)

Figure S20. UV-Vis and fluorescence spectra of 2a in toluene ($\lambda_{excitation}$ =522 nm).

Figure S21. UV-Vis and fluorescence spectra of **2b** in acetone ($\lambda_{\text{excitation}}$ = 561 nm)

Figure S22. UV-Vis and fluorescence spectra of **3a** in toluene ($\lambda_{excitation}$ =578 nm).

Figure S23. UV-Vis and fluorescence spectra of **3b** in acetone ($\lambda_{excitation}$ = 570 nm)

Figure S24. Kubelka-Munk function diffuse reflectance spectrum of **2b**, and SubPc-POP 1

Figure S25. Kubelka-Munk function diffuse reflectance spectrum of 3b, and SubPc-POP 2

J. SubPc-POP hydrolysis ¹H NMR

A small sample (~5 mg) of POP powder was hydrolyzed by addition of D_2O and the monomers were redissolved in deuterated acetone. Samples were sonicated briefly to help solubilize monomers. This technique is used to confirm the presence of both monomers in the polymer.

Figure S26. ¹H NMR spectrum of SubPc-POP 1 after hydrolysis

Figure S27. ¹H NMR spectrum of SubPc-POP 2 after hydrolysis

K. ¹H and ¹³C NMR Spectra

Figure S28. ¹H NMR spectrum of 4

Figure S29. ¹³C NMR spectrum of 4

Figure S30. ¹H NMR spectrum of 1a

Figure S31. ¹³C NMR spectrum of 1a

Figure S33. ¹³C NMR spectrum of 1b

Figure S34. ¹H NMR spectrum of 2a

Figure S35. ¹³C NMR spectrum of 2a

Figure S36. ¹H NMR spectrum of 2b

Figure S37. ¹³C NMR spectrum of 2b

Figure S38. ¹H NMR spectrum of 3a

Figure S39. ¹³C NMR spectrum of 3a

Figure S40. ¹H NMR spectrum of 3b

Figure S41. ¹³C NMR spectrum of 3b

Reference

(1) Quesada, E.; Esperanza, S.; Cabezo, B.; Torres, T. *Eur. J. Org. Chem.* **2000**, 2767–2775.