

Supplementary Data

Table of Contents

1.	Different solvent extracts and their activity against MTB H37Rv	S2
2.	Bioautography	S2
3.	HPLC profile of compound mixture observed at λ_{max} : 254 nm	S 3
4.	Elucidation of structure of the isolated compounds	S4-S6
5.	^1H and ^{13}C NMR spectra of Compound $\boldsymbol{1}$ and Compound $\boldsymbol{2}$ in (CD_3)_2CO	S7-S8
6.	HRMS spectra of Compound 1 and Compound 2	S9
7.	Phylogenetic Tree	S10
8.	List of primers used in this study	S10

1. Table S1, shows different solvent extracts and their activity; ethyl acetate extract had the best activity against *Mycobacterium tuberculosis* H37Rv using REMA.

Solvent used for Extraction	MIC against <i>M.tb</i> H37Rv (in μg/mL)
Ethyl acetate	30
Chloroform	No activity
Methanol	60
Acetone	120

2. The zone of clearance indicated with red circle is the active principle. At left is the fractionated AME on TLC silica plate with Hexane:acetone::1:1. This was overlaid with soft agar containing *M.smegmatis* and incubated for 24-48hrs. The red circles on both the image shows the AMF (Antimycobacterial Fraction).

Figure S2: Bioautography

Figure S3: HPLC profile of compound mixture observed at λ_{max} : 254 nm

S3

4. Elucidation of structure of the isolated compounds

Carbon No.	Compoun	d 1	Compound	d 2
	¹ H	¹³ C	¹ H	¹³ C
1	-	154.8	-	154.9
2	6.96 (d <i>, J</i> = 8.5)	113.2	6.78 (d <i>, J</i> = 8.5)	112.9
3	8.03 (d <i>, J</i> = 8.5)	130.1	7.83 (d <i>, J</i> = 8)	130.0
4	-	126.2	-	126.2
4a	-	129.8	-	129.6
4b	-	143.9	-	143.5
6	-	161.2	-	161.3
6a	-	124.5	-	123.1
7	8.08 (d, <i>J</i> = 1)	120.2	7.61 (s)	122.3
8	-	140.0	-	141.3
9	7.76 (d <i>, J</i> = 1)	115.3	7.22 (s)	119.4
10	-	158.7	-	158.2
10a	-	123.5	-	122.4
10b	-	114.4	-	114.6
11	8.61 (s)	102.7	8.31 (s)	102.8
12	-	153.1	-	153.0
12a	-	116.2	-	116.0
-CH=	6.97 (dd <i>, J</i> = 7, 18)	136.3	-	-
=CH ₂	5.52 (d <i>, J</i> = 11)	117.0	-	-
	6.15 (d <i>, J</i> = 17.5)		-	
	-			
1'	6.41 (d <i>, J</i> = 9.5)	76.2	6.21 (d <i>, J</i> = 9.5)	76.3
2'	3.87 (dd <i>, J</i> = 7, 9.5)	76.1	3.70 (dd <i>, J</i> = 7, 9.5)	76.1
3'	-	74.5	-	74.5
4'	3.37 (d <i>, J</i> = 8.5)	77.5	3.21 (d, <i>J</i> = 8)	77.5
5'	4.64 (q <i>, J</i> = 6.5)	72.5	4.48 (q <i>, J</i> = 6.5)	72.5
6'	1.24 (d <i>, J</i> = 6.5)	17.3	1.05 (d <i>, J</i> = 6.5)	17.3
7'	1.45 (s)	24.2	1.28 (s)	24.2
1(-OH)	9.84 (s)	-	9.64 (s)	-
10(-OCH ₃)	4.28 (s)	57.0	3.98 (s)	56.9
12(-OCH ₃)	4.26 (s)	56.9	4.03 (s)	56.8
8(-CH₃)	-	-	2.34 (s)	21.5
2'(-OH)	3.67 (d <i>, J</i> = 7)	-	3.50 (d <i>, J</i> = 7)	-
3'(-OH)	4.00 (s)		3.86 (s)	-
4'(-OH)	3.79 (d <i>, J</i> = 8.5)	-	3.63 (d <i>, J</i> = 8.5)	-

Table S2. NMR data for Chrysomycin A (1) and Chrysomycin B (2) in $(CD_3)_2CO$

Chrysomycin A (1)

Figure S4b. Structures of Chrysomycin A (1) and Chrysomycin B (2)

Table S2 shows the ¹H and ¹³C NMR spectral data of the isolated compounds. The pure compound **1** was yellow crystalline in nature, and by HR-ESI-MS (High-resolution electrospray ionization mass spectrometry) the molecular formula was determined as $C_{28}H_{28}O_9$ which exhibited an ion peak at m/z 531.1625 [M+Na]⁺. Presence of eleven quaternary carbons in the aromatic region as indicated by the DEPT (Distortionless Enhancement by Polarization Transfer) spectra along with five aromatic protons implied a fused polyaromatic framework. Chemical shifts at δ_H 3.87 (H-2'), δ_H 3.37 (H-4'), δ_H 4.64 (H-5') along with the presence of three hydroxyl protons at δ_H 3.67, δ_H 3.79, δ_H 4.00 which did not exhibit HSQC correlations clearly indicated the presence of a carbohydrate ring. There was also a hydroxyl proton at δ_H 9.84 indicating the presence of phenolic group. Presence of COSY correlation between δ_H 6.41 (H-1') and δ_H 3.87 (H-2') along with HMBC correlation of H-1' with C-3 (δ_C 130.1) and C-4a (δ_C 129.8) indicated H-1' as a benzylic carbon and established the connectivity between the carbohydrate ring and the

aromatic group as a C-glycoside. Furthermore, HMBC correlation between H-2 (δ_{H} 6.96) and C-3; phenolic proton (δ_{H} 9.84) and C-2 (δ_{C} 113.2) unambiguously confirmed the carbohydrate ring attachment to the phenolic portion of the polyaromatic moiety. HMBC correlations of H-2 and H-11 (δ_{H} 8.61) with C-12a (δ_{C} 116.2); H-11 with C-10a (δ_{C} 123.5); H-9 (δ_{H} 7.76) with C-10a; H-9 with C-7 (δ_{C} 120.2); H-7 (δ_{H} 8.08) with C-6 (δ_{C} 161.2, C=O) along with H-11 with C-4b (δ_{C} 143.9) indicated the fused nature of the polyaromatic framework. COSY, HMBC correlations (Figure S4a) along with coupling constants suggested the identity of the carbohydrate ring as a virenoside. The ¹H NMR showed the presence of a vinyl group in the compound at C-8. This and the above-discussed NMR data, together strongly suggested that the isolated compound **1** is chrysomycin A, a naptho-coumarin (Figure S4b) which was further confirmed by comparison of the NMR data with the published literature.¹⁻⁴

The molecular formula of compound **2** was determined as $C_{27}H_{28}O_9$ by HR-ESI-MS which exhibited an ion peak at m/z 519.1638 [M+Na]⁺. The ¹H and ¹³C NMR of compound **2** (Table S2) was similar to chrysomycin A (**1**) and HRMS data showed a mass difference of 12 da indicating that these two compounds belongs to the same chemical class. The ¹H NMR showed the presence of methyl group in compound **2** at C-8 which confirms chrysomycin B (Figure S4b).

Initially, partial gene sequence (NCBI accession number, KX364007) of polyketide synthase II alpha subunit (PKS IIα) of the isolate OA161 showed 86% homology to the PKS IIα gene of the chrysomycin biosynthetic gene cluster of *Streptomyces albaduncus*⁵. This suggested that the backbone of the active principle produced by our isolate could be a naptho-coumarin.

References

- 1. F. Strelitz, H. Flon and I. N. Asheshov, Journal of Bacteriology, 1955, 69, 280-283.
- 2. G. T. Carter, A. A. Fantini, J. C. Jjames, D. B. Borders and R. J. White, *The Journal of antibiotics*, 1985, 38, 242-248.
- 3. S. K. Jain, A. S. Pathania, R. Parshad, C. Raina, A. Ali, A. P. Gupta, M. Kushwaha, S. Aravinda, S. Bhushan and S. B. Bharate, *RSC Advances*, 2013, 3, 21046-21053.
- 4. U. Weiss, K. Yoshihira, R. Highet, R. White and T. Wei, *The Journal of antibiotics*, 1982, 35, 1194-1201.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403-410.

5.¹H and ¹³C NMR spectra of Compound **1** (Chrysomycin A) and Compound **2** (Chrysomycin B) in (CD₃)₂CO **Figure S5a**. ¹H -NMR spectrum of Compound **1** (Chrysomycin A) in (CD₃)₂CO

Figure S5b. ¹³C -NMR spectrum of Compound 1 (Chrysomycin A) in (CD₃)₂CO

Figure S5c. ¹H -NMR spectrum of Compound 2 (Chrysomycin B) in (CD₃)₂CO

Figure S5d. ¹³C -NMR spectrum of Compound 2 (Chrysomycin B) in (CD₃)₂CO

6. HRMS spectra of Compound 1 and Compound 2

Figure S6a. HRMS spectrum of Compound 1 (Chrysomycin A)

7. Phylogentic tree constructed using the 16S rRNA gene sequence.

0.005

Supplementary data. 7: Evolutionary relationships of taxa. The optimal tree with the sum of branch length = 0.19121665 is shown. The tree is constructed with MEGA 7 software and drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. Numbers at nodes indicate levels of bootstrap support (%) based on a neighbor-joining analysis of the datasets. only values >50 % are shown. NCBI accession numbers are at the end of the species name. Bar 0.005 denote nucleotide substitutions per site. *Rhodococcus eui* was selected as the outgroup.

S.No	Primers	Used for
		Amplificatiion(Amp)/Sequencing(Seq)
1	5'-GAGTTTGATCCTGGCTCAG-3' (9F)	16S rRNA gene Amplification and sequencing
2	5'-AAGGAGGTGATCCAGCC-3' (1541R)	16S rRNA gene Amplification and sequencing
3	5'-TSGCSTGCTTGGAYGCSATC-3' (F)	Partial PKS II alpha gene amplication and sequencing
4	5'-TGGAANCCGCCGAABCCTCT-3' (R)	Partial PKS II alpha gene amplication

8. List of Primers used in this study

		and sequencing
5	5'-GGTGGCGAAGGCGGA-3 '(F)	16S rRNA gene Amplification and sequencing
6	5'- GAACTGAGACCGGCTTTTGA-3' (R)	16S rRNA gene Amplification and sequencing

'F' and 'R' represents forward and reverse primer, respectively. The numerals before the F/R represents the nucleotide position with respect to *E.coli* 16S rRNA gene.