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1 Determination of the equilibrium vesicle shape

Under the influence of gravity the vesicles in the microfluidic chip sink to the bottom of

the channels as they contain denser sucrose solution compared to the surrounding glucose

solution. Depending on their volume relative to the membrane area and the difference

between the areas of their membrane leaflets, their shape deviates from a shape of a sphere

to a lesser or greater degree when resting on the substrate. The corresponding parameters

that influence the vesicle shape, i.e. the relative volume (v) and the difference between the

equilibrium surface areas of the membrane leaflets in relative units (∆a0), are defined by

the expressions

v =
3V

4πR3
0

, (SI1)

∆a0 =
∆A0

8πR0h
, (SI2)

where V is the volume of the vesicle, R0 is the radius of the sphere that has the same area as

the vesicle (A), ∆A0 is the difference between the equilibrium surface areas of the membrane

leaflets, and h is the distance between the neutral surfaces of the outer and the inner leaflet.

The shape of a lipid vesicle is determined by the minimum of its mechanical energy. We

analyze the shape of the lipid vesicle under the assumption that the vesicle volume and its

area do not change. Therefore, the elastic energy of a closed bilayer is the sum of only two

terms: (a) the bending energy term [1]

Wb =
1

2
kc

∫
(C1 + C2 − C0)

2dA , (SI3)

where kc is the bending modulus, C1 and C2 are the principal curvatures, and C0 is the

spontaneous curvature, and (b) the area difference elasticity (relative expansivity) term [2]

WADE =
kr

2Ah2
(∆A−∆A0)

2 , (SI4)

where kr is the non-local bending modulus and ∆A is the difference between the areas of

the outer and the inner leaflets, which is equal to h
∫

(C1 + C2)dA.
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In addition, in the case of the difference in solution densities (∆ρ) also the gravity has

to be taken into consideration to describe the conformation of the vesicle that lies on the

substrate. The corresponding gravitational potential energy can be conveniently expressed

as [3]

Wg = ∆ρg

∫
ZdV , (SI5)

where g is the gravitational field and Z is the vertical distance between the substrate and

the point in the vesicle interior.

The minima of the vesicle mechanical energy correspond to stationary shapes. The

shape of a flaccid vesicle is therefore obtained from the minimum of Wb + WADE + Wg.

The constraints in volume and area can be incorporated in the energy minimization by

introducing the Lagrange multipliers (µ and λ). Thus the shape equation for the vesicle is

obtained by minimizing the functional

G = Wb +WADE +Wg − µV − λA . (SI6)

The procedure for obtaining the vesicle shape from Eq. (SI6) is outlined in the following in

some detail.

It is convenient to minimize the functional G separately with respect to ∆A, and for

a given ∆A with respect to the vesicle shape [4, 5]. At equilibrium the derivative of the

functional G with respect to the relative area difference equals zero

d(Wb +WADE +Wg)

d∆A

∣∣∣∣
eq

= 0 . (SI7)

Then the variation of the functional G with respect to the vesicle shape is performed at

equilibrium. The variation of the relative expansivity term is proportional to the variation

of the relative area difference, δWADE = (dWADE/d∆A)δ∆A, since the relative expansivity

term (WADE) depends only on the relative area difference (∆A). In order to perform the

shape variation it is convenient to define a new parameter ν that represents the derivative

of the relative expansivity energy with respect to ∆A:

ν = −dWADE

d∆A
= − kr

Ah2
(∆A−∆A0) . (SI8)

Using Eq. (SI8) the variation of the relative expansivity term (δWADE) reads −νδ∆A.

An axisymmetrical surface can be parametrized by the coordinates R(S) and Z(S)

[6], where R is the distance between the symmetry axis and a certain point on the con-

tour, and S is the arclength along the contour. The inclination of the contour is defined

through the equation tanψ = dZ/dR, and the coordinates R and Z depend on the an-

gle ψ through the equations Ṙ = cosψ and Ż = sinψ, where the overdots denote the

derivatives with respect to S. In this parametrization the principal curvatures along the

parallels and the meridians, and the mean curvature [(C1 + C2)/2] can be expressed as

sinψ/R and ψ̇, and (sinψ/R + ψ̇)/2. Accordingly, the parameters of the vesicle are given
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by: V = π
∫ S∗

0
R2 sinψdS, which is the volume of the vesicle, A = 2π

∫ S∗

0
RdS, the area of

the vesicle, and ∆A = 2πh
∫ S∗

0
R(sinψ/R+ ψ̇)dS, the area difference, where S∗ is the total

length of the contour.

The angle ψ and coordinates R, Z are taken as three independent variables. The inter-

relation between them can be kept constant by introducing new Lagrange multipliers γ(S)

and f(S), which represent the shear force in the radial and axial directions [7, 8]. The

variation of the functional G can then be expressed for an axisymmetrical vesicle as

δG = δ

∫ S∗

0

LdS , (SI9)

where L is the Lagrange function:

L = πkcR

(
sinψ

R
+ ψ̇ − C0

)2

− 2πνh(sinψ + ψ̇R) + π∆ρgR2Z sinψ

−πµR2 sinψ − 2πλR + γ(Ṙ− cosψ) + f(Ż − sinψ) . (SI10)

The variation of the functional [Eq. (SI9)] with respect to all independent variables along

the contour has to vanish (δG = 0) [6], which leads to the system of differential equations

ψ̈ =
sinψ cosψ

R2
− ψ̇ cosψ

R
+

∆ρgRZ cosψ

2kc

− µRcosψ

2kc

+
γ sinψ

2πkcR
− fcosψ

2πkcR
, (SI11)

γ̇ = πkc

((
ψ̇ − C0

)2 − sin2 ψ

R2

)
− 2πνhψ̇ + 2π∆ρgRZ sinψ − 2πµR sinψ − 2πλ , (SI12)

ḟ = −π∆ρgR2 sinψ . (SI13)

The system of equations [Eqs. (SI11)-(SI13)] is solved by the shooting method. The inte-

gration is stopped at ψ = π/2. In the procedure for obtaining the vesicle shape the values

of µ, λ, ν, the axial length, f and R at the bottom, and the membrane curvature at the

top are found to fulfill the conditions of the chosen V , A, to fulfill the equilibrium condi-

tion [Eq. (SI8)], and to fulfill the conditions of the continuity of Z, γ, f and the meridian

curvature at the equator.

The vesicle is treated as composed of units and can be described by the sum of the

corresponding sections [9]. These sections have to possess the same Lagrange multipliers.

The main vesicle body has a discoid shape (Fig. SI1). If we neglect the influence of gravity

on the protrusion, its shape can be described by the string of spheres. In this case (ψ̇ = 0)

the corresponding radii that fulfill the differential equations are

Rs =
−λ+ kcC

2
0/2±

√
(λ− kcC2

0/2)2 − 2µ(νh+ kcC0)

µ
. (SI14)

For the vesicle’s equilibrium shape, influenced by gravity, the size of the small beads in

the protrusion can be obtained by taking the minus sign before the root in Eq. (SI14).

Therefore, in the procedure for obtaining the vesicle shape with a bead-like protrusion, at
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chosen number of spherical beads also the contributions of volume, surface area and area

difference of the protrusion to the volume, surface area and area difference of the vesicle

have to be taken into consideration. With this theory, the shapes, characterized by a certain

number of beads (n), with corresponding energies, can be calculated. At given equilibrium

difference between the areas of the membrane leaflets, the conformation that has the lowest

mechanical energy among the conformations with different n, corresponds to the stationary

shape. At the border between two adjacent regions of stationary shapes the mechanical

energy is continuous.

The shapes can also be determined approximately using a dome model as described in

Sec. 2. Some characteristic shapes are shown in Fig. SI1. In experiments we frequently

observe that the size of the first bead in the protrusion formation is fixed and therefore we

can assume that the first neck closes up and the material transport is stopped. We hence

Rv

v

Z
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R2 n

lR2

= 2.7

= 1

∆a

∆a
0

0

∆a

0

0

= 3.5
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Figure SI1: The comparison of the shapes obtained by solving the differential equations

(left column) and the shapes in the approximation of a dome (right column). The shapes

at the bottom represent the vesicles where the first-formed bead (with the radius denoted

by Rl) is the largest bead in the string. The radius of the main vesicle body at the equator,

the distance of the equatorial plane from the substrate, and the radii of the small beads are

marked by Rv, Z̄, and Rn, respectively. The equilibrium differences between the areas of the

membrane leaflets in dimensionless units for each row (∆a0 = ∆A0/8πhR0) are given in the

panel. The other parameters, i.e. the relative volume (v), the vesicle size (R0 =
√
A/4π),

the difference in solution densities (∆ρ), the bending constant (kc), and the non-local and

local bending constants ratio (kr/kc), are taken to be 0.85, 8 µm, 18.5 kg/m3, 10−19 J, and

3, respectively [10].
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deduct the surface area and the volume of this first bead from the vesicle surface area and

volume, and calculate the shape of the rest of the vesicle by minimizing the corresponding

mechanical energy.

2 Predictions of the dome model

In a first approximation the shape of the main vesicle body resembles a dome of a geometrical

sphere with a bottom cut off. If a protrusion is formed, its shape can be approximated with a

string of spherical beads [9]. The dimensions of the vesicle with the protrusion, i.e. the radius

of the main vesicle body (Rv), the distance of the equatorial plane from the substrate (Z̄),

the radius of the small beads (Rn) and their number (n), are determined in the minimization

process considering the geometrical relations for the vesicle volume (V ), its membrane area

(A), and the difference between the surface areas of the membrane leaflets (∆A) [11].

In Fig. SI1 some representative shapes for the vesicles are shown. It is evident that the

difference between the shapes obtained by the approximation of a dome and the shapes

obtained by solving the differential equations (Sec. 1) decreases with increasing difference

between the surface areas of the membrane leaflets.

3 Finding the spontaneous curvature of the membrane

with intercalated LPS

Intercalation of LPS molecules into the outer membrane leaflet changes the spontaneous

curvature of the membrane (C0). The expression for C0 can be obtained from the expressions

for the spontaneous curvatures of the outer and the inner membrane leaflet (Cout and Cin)

[11]

C0 =
1

2
(Cout + Cin) . (SI15)

We can write the outer spontaneous curvature as

Cout =
NPOPC,outAPOPCCPOPC +NLPSALPSCLPS

NPOPC,outAPOPC +NLPSALPS

(SI16)

with Ni the number, Ai the surface area, and Ci the intrinsic curvature of either POPC or

intercalating LPS molecules, and the curvature of the inner leaflet accordingly as

Cin = −NPOPC,inAPOPCCPOPC

NPOPC,inAPOPC

, (SI17)

where the minus sign accounts for the opposite orientation of the POPC molecules compared

to that in the outer leaflet. Since LPS molecules are relatively large and their hydrophobic

part not significantly curved, the preferred curvature of a LPS molecule can be assumed neg-

ligible when compared to the preferred curvature of POPC molecule (CPOPC ≈ −0.022/nm
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[12]), and the spontaneous membrane curvature is obtained in the form

C0 = −NLPSALPS

2A
CPOPC (SI18)

where A is the membrane surface area.
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[6] F. Jülicher and U. Seifert, Phys. Rev. E 49, 4728 (1994).

[7] E. Evans and A. Yeung, Chem. Phys. Lipids 73, 39 (1994).
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Video Captions

Movie 1: Reversible shape alterations between the equilibrium shapes of a vesicle at very

low LPS concentrations (0.185 – 0.25 µg/ml): a vesicle with one outer bead (at

0.25 µg/ml), a vesicle without protrusions (0.22 µg/ml), and a vesicle with an

inner bead (0.185 µg/ml).

Movie 2: Reversible transformation of the membrane shape at high LPS concentrations

(5 µg/ml): formation of a string of beads after the addition of LPS to the mi-

crofluidic chip reservoir, and the shortening of the string of beads when the LPS

molecules diffuse out of the microfluidic chamber.
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