Supplementary Information:

Modification of the Intermediate Band and Thermoelectric Properties in Se-Doped CoSbS_{1-x}Se_x Compounds

Yonghui You,^a Xianli Su,^a* Wei Liu,^a Yonggao Yan,^a Tiezheng Hu, ^a Ctirad Uher,^b Xinfeng Tang a*

 ^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
 ^b Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
 *Email: suxianli@whut.edu.cn or tangxf@whut.edu.cn

The calculated mass fluctuation scattering parameter Γ_M and the strain field fluctuation scattering parameter Γ_S are presented in Table S1. Assuming that Umklapp processes and point defects are the dominant scattering mechanisms during the heat transport, the lattice thermal conductivity of alloyed CoSbS_{1-x}Se_x (κ_L) and of pure CoSbS (${{}^{\square}_L}^P$) compounds can be expressed as:

$$\frac{\kappa_L}{\kappa_L^P} = \frac{\tan^{-1} u}{u} \tag{1}$$

$$u^{2} = \frac{\pi^{2} \theta_{D} \Omega}{h v^{2}} \kappa_{L}^{P} \Gamma$$
⁽²⁾

where u, θ_D , Ω , h, v, Γ are the disorder scaling parameter, Debye temperature, average atomic volume, Planck constant, average sound velocity and scaling parameter, respectively. Γ can be calculated by the model of Abeles³⁹ and Slack⁴⁰ as $\Gamma = \Gamma_M + \Gamma_S$.

$$\Gamma_{M} = \frac{\sum_{i=1}^{n} c_{i} \left(\frac{\bar{M}_{i}}{\bar{\bar{M}}}\right)^{2} f_{i}^{1} f_{i}^{2} \left(\frac{M_{i}^{1} - M_{i}^{2}}{\bar{M}_{i}}\right)^{2}}{\sum_{i=1}^{n} c_{i}}$$
(3)
$$\Gamma_{S} = \frac{\sum_{i=1}^{n} c_{i} \left(\frac{\bar{M}_{i}}{\bar{\bar{M}}}\right)^{2} f_{i}^{1} f_{i}^{2} \varepsilon_{i} \left(\frac{r_{i}^{1} - r_{i}^{2}}{\bar{r}_{i}}\right)^{2}}{\sum_{i=1}^{n} c_{i}}$$
(4)

where *n* is the number of different crystallographic sublattice types in the lattice and c_i are the relative degeneracies of the respective sites. In pure CoSbS, n = 3, $c_1 = c_2 = c_i = 1$, \overline{M} is the average atomic mass, \overline{M}_i and \overline{r}_i are the average atomic mass and radius on the *i*-th sublattice, respectively. f_i^k is the fractional occupation of the *k*-th atom on the *i*-th sublattice. The atomic mass and radius are M_i^k and r_i^k , respectively. The relations discussed above can be expressed as:

$$\overline{M}_i = \sum_k f_i^k M_i^k \tag{5}$$

$$\overline{r_i} = \sum_k f_i^k r_i^k \tag{6}$$

$$\overline{\overline{M}} = \frac{\sum_{i=1}^{n} c_i \overline{M}_i}{\sum_{i=1}^{n} c_i}$$
(7)

The results is listed in Table S1.

Table S1 Lattice thermal conductivity κ_L , disorder scaling parameter u, and disorder scattering parameters Γ_M , Γ_S and Γ of CoSbS_{1-x}Se_x ($0 \le x \le 0.07$) compounds.

-					
Compound	$\kappa_L (Wm^{-1}K^{-1})$	и	$\Gamma_{\rm M}$	$\Gamma_{\rm S}$	Г
0	9.36				
0.01	8.57	0.546	0.00144	0.00400	0.00544
0.03	8.51	0.572	0.00419	0.00607	0.01026
0.05	8.27	0.659	0.00677	0.00831	0.01508
0.07	7.23	1.046	0.00920	0.01071	0.01991