Supplementary Information

Trace-doped metal-organic gels with remarkably enhanced

luminescence

*Xiying Feng, Lihua Zeng, Dianting Zou, Zizhe Zhang, Guihao Zhong, Shuyin Peng, Liping Liu, Liuping Chen, and Jianyong Zhang**

Sun Yat-Sen University, Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Guangzhou 510275, China. Email: zhjyong@mail.sysu.edu.cn

Experimental section

Materials and methods. All regents were analytical grade and used as received without further purification. Scanning electron microscopy (SEM) images were collected on a Hitachi SU8010 Ultra-high Resolution FE-SEM. Before measurement, the gel sample was dispersed in ethanol with the aid of sonication, put on silicon plate, and sputter coated with gold. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) investigation were carried out on a FEI Tecnai G2 Spirit 120 kV transmission electron microscope with an energy dispersive X-ray spectrometer. The gel sample was dispersed in ethanol with the aid of sonication, and mounted on a carbon coated copper grid. X-ray diffraction investigations were carried out on a Rigaku Smart Lab diffractometer equipped with Cu K α radiation (λ = 1.54056 Å). Thermogravimetric (TG) analyses were measured on a NETZSCHSTA 449 F3 Jupiter instrument in a flowing nitrogen atmosphere with a 10 K min⁻¹. N₂ adsorption measurements were performed using a Quantachrome Autosorb-IQ₂ analyzer. Before sorption measurements, the sample was degassed at 80°C for 16 h under high vacuum. Absorption measurements were carried out on a UV-2450 spectrophotometer. Photoluminescence measurements and time-resolved emission decay behaviours were recorded on an Edinburgh Instruments FLS980 combined lifetime and steady state fluorometer. Absolute photoluminescence quantum yields were determined on a Hamamatsu C9920-03G absolute PL quantum yield measurement system.

ZrBDC gels. Synthetic procedure represented by **ZrBDC-1:1-0.15** system. H₂BDC (99.6 mg, 0.6 mmol) was dissolved in DMF (2.0 mL) and $ZrCl_4$ (140.0 mg, 0.6 mmol) was dissolved in EtOH (2.0 mL), and the two solutions were rapidly mixed together. The resulting homogeneous solution was then allowed to stand at 353 K for gelation in a closed container. A gel was obtained after 1.5 h. After gelation, the wet gel was aged for 1 d at 353 K.

Subsequently, the wet gel was subjected to solvent exchange with DMF for 12 h for 3 times, then the wet gel was subjected to solvent exchange with EtOH for 12 h for 3 times. The as-prepared gel was placed into a high-pressure Soxhlet extractor (0.75 L). The solvent in the wet gel was extracted with liquid CO_2 (265–270 g) for 24 h, and

the extraction temperature was maintained at 308 K. After depressurizing the stainless-steel autoclave slowly at room temperature for 2 h a white solid was obtained (175 mg).

ZrBDC-TCPEx gels. Synthetic procedure represented by **ZrBDC-TCPE0.01%** system. H₂BDC (99.6 mg, 0.6 mmol) was dissolved in a solution of H₂TCPE in DMF (2.0 mL, 3.0×10^{-5} mol L⁻¹), ZrCl₄ (140.0 mg, 0.6 mmol) was dissolved in EtOH (2.0 mL), and the two solutions were rapidly mixed together. The resulting homogeneous solution was then allowed to stand at 353 K for gelation in a closed container. A gel was obtained after 4 h. After gelation, the wet gel was aged for 1 d at 353 K. After drying, a white solid was obtained (176 mg).

ZrTCPE gel. A solution of H_4TCPE (38.1 mg, 0.075 mmol) in DMF (0.5 mL), and a solution of $ZrCl_4$ (35.0 mg, 0.15 mmol) in EtOH (0.5 mL) was mixed and the resulting homogeneous solution was allowed to stand at 353 K for gelation in a closed container. A camel gel was obtained after 5 h.

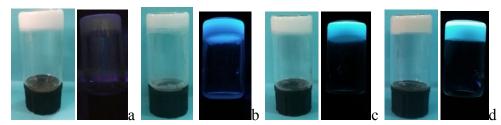
Fluorescence experiments. ZrBDC-TCPE0.01% wet gel was dispersed in 100 mL of H₂O by ultrasonic to obtain a dispersion (10 g L⁻¹, mass was determined after the gel was dried under vacuum). The fluorescence response was monitored upon excitation after incremental addition of analyte solutions (0.1 mM). *Caution! PA are highly explosive and should be handled carefully and in small amounts*. Analyte (0-400 μL, 0.1 mM stock solution) was added to the dispersion of **ZrBDC-TCPE0.01%**

and fluorescent intensity was recorded. By plotting fluorescence intensity with increasing concentration of analyte, slope of graph (*m*) was calculated. The standard deviation (σ) was calculated from eleven blank measurements of **ZrBDC**-**TCPE0.01%** gel dispersion. The detection limit was calculated based on the fluorescence titration and calculated with the equation LOD = $3\sigma/m$.

Table S1 Gelation test of $ZrCl_4$ and H_2BDC (T = 80 °C, solvent EtOH:DMF =1:1).

sample	L	Zr:L	$c(L)/mol L^{-1}$	Result	Time/h
ZrBDC-1:1-0.15	H ₂ BDC	1:1	0.15	white opaque gel	1.5
ZrBDC-3:2-0.15	H ₂ BDC	3:2	0.15	white opaque gel	1.5
ZrBDC-2:1-0.15	H ₂ BDC	2:1	0.15	white opaque gel	1
ZrBDC-1:2-0.15	H ₂ BDC	1:2	0.15	white precipitate	
ZrBDC-2:3-0.15	H ₂ BDC	2:3	0.15	white precipitate	
ZrBDC-1:1-0.2	H ₂ BDC	1:1	0.2	white opaque gel	1.5

Table S2 Porosity properties of **ZrBDC-1:1-0.15** and **ZrBDC-TCPE**x (x = 0.01, 0.1, 1, 10%).


1, 1070).				
Sample	$S_{ m BET}$ a)/m ² g ⁻¹	$V_{\rm t}^{\rm b)}/{\rm cm}^3~{\rm g}^{-1}$	$V_{\rm micro}$ c)/cm ³ g ⁻¹	$V_{\rm meso}$ d)/cm ³ g ⁻¹
ZrBDC-1:1-0.15	1236	0.929	0.439	0.471
ZrBDC-1:1-0.15 ^{e)}	1140	1.107	0.669	0.471
ZrBDC-TCPE0.01%	1145	0.832	0.409	0.403
ZrBDC-TCPE0.01% ^{e)}	1280	0.598	0.437	0.571
ZrBDC-TCPE0.1%	1213	0.612	0.435	0.141
ZrBDC-TCPE0.1% ^{e)}	1219	0.806	0.431	0.335
ZrBDC-TCPE1%	1044	0.613	0.374	0.212
ZrBDC-TCPE10%	901	0.682	0.315	0.340

^{a)} S_{BET} is BET specific surface area; ^{b)} V_{t} is the total specific pore volume; ^{c)} V_{micro} was calculated by SF method; ^{d)} V_{meso} was calculated by BJH method; ^{e)} Parallel samples.

Table S3 Fluorescence lifetime data of **ZrBDC-TCPE**x (x = 0.01, 0.1, 1, 10%), **ZrBDC-1:1-0.15**, and **ZrTCPE** gels dispersed in water (10 g L⁻¹).

$ au_1$ ^{b)} /ns	$A_1^{c)}$	$ au_2^{ ext{ b)}}/ ext{ns}$	$A_2^{c)}$	$< \tau > d)/ns$	${\it I}\!$				
2.13	0.44	4.25	0.56	3.32	59%				
3.87	0.96	11.45	0.04	4.17	57%				
2.35	0.30	4.54	0.70	3.87	76%				
0.03	0.11	4.48	0.89	3.98	80%				
0.52	0.70	5.83	0.30	2.11	14%				
1.90	0.36	5.34	0.64	4.12	86%				
	$\frac{\tau_1^{\text{ b)/ns}}}{2.13}$ 2.13 3.87 2.35 0.03 0.52	$\begin{array}{c cccc} \hline \tau_1 {}^{\rm b)}/\rm ns & A_1 {}^{\rm c)} \\ \hline 2.13 & 0.44 \\ 3.87 & 0.96 \\ 2.35 & 0.30 \\ 0.03 & 0.11 \\ 0.52 & 0.70 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

^{a)} The resulting signals were fitted with a double exponential decay function, which obtained the best fit with respect to both the recorded phase and intensity information; ^{b)} Fluorescence lifetime; ^{c)} Fractional contribution; ^{d)} Weighted mean lifetime was calculated using the equation $\langle \tau \rangle = (A_1 \tau_1 + A_2 \tau_2)/(A_1 + A_2)$; ^{e)} Absolute fluorescence quantum yield was obtained for the wet gel with solvent exchanged with ethanol.

Fig. S1 Photographs of (from left to right) **ZrBDC-1:1-0.15**, **ZrBDC-TCPE0.01%**, **ZrBDC-TCPE0.1%**, **ZrBDC-TCPE1%** and **ZrBDC-TCPE10%** wet gels taken under day light and under irradiation with 365 nm UV light.

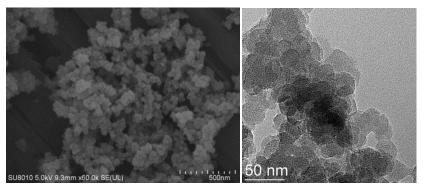


Fig. S2 SEM (left) and TEM (right) images of ZrBDC-TCPE0.1%.

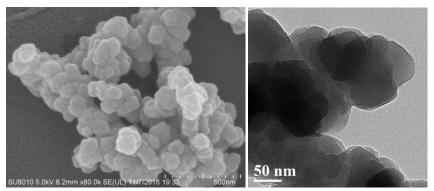
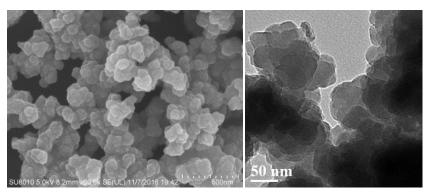
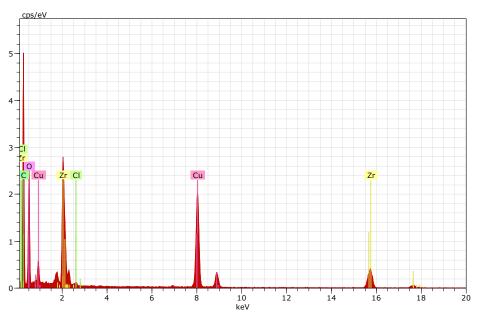
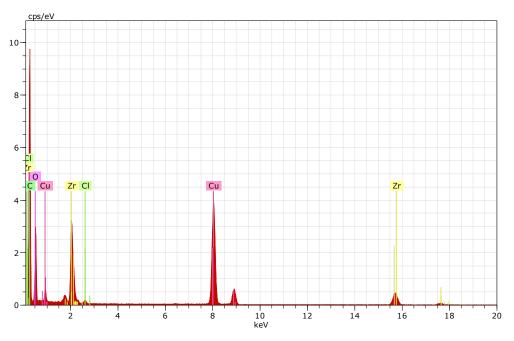


Fig. S3 SEM (left) and TEM (right) images of ZrBDC-TCPE1%.

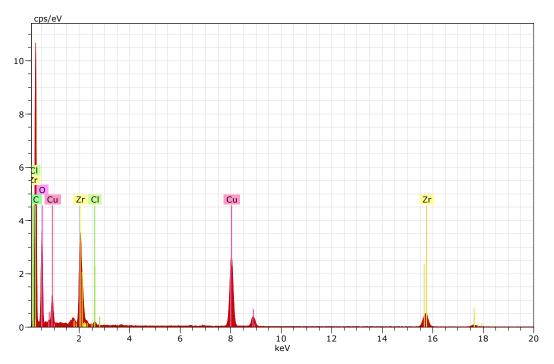

Fig. S4 SEM (left) and TEM (right) images of ZrBDC-TCPE10%.

Fig. S5 EDX spectrum of **ZrBDC-1:1-0.15** (mounted on a carbon coated copper grid) showing atomic composition of Zr 6.42 and Cl 0.22%.

Fig. S6 EDX of **ZrBDC-TCPE0.01%** wet gel (mounted on a carbon coated copper grid) showing atomic composition of Zr 3.97 and Cl 0.20%.

Fig. S7 EDX of **ZrBDC-TCPE0.1%** wet gel (mounted on a carbon coated copper grid) showing atomic composition of Zr 4.28 and Cl 0.18%.

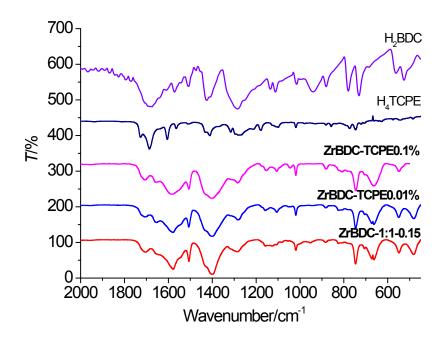


Fig. S8 FT-IR spectra of ZrBDC-1:1-0.15, ZrBDC-TCPE0.01%, ZrBDC-TCPE0.1%, 1,4-benzenedicarboxylic acid and tetrakis(4-carboxyphenyl)ethylene.

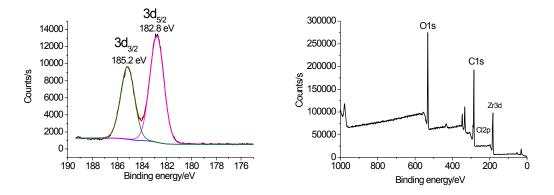
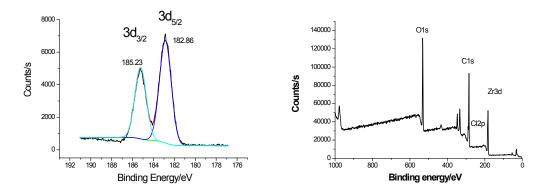
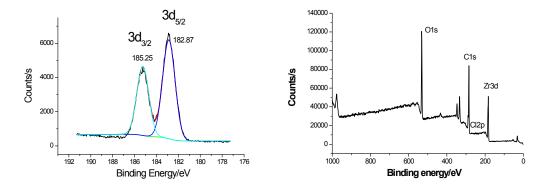
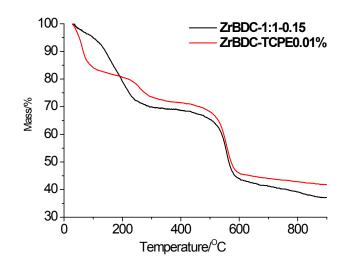
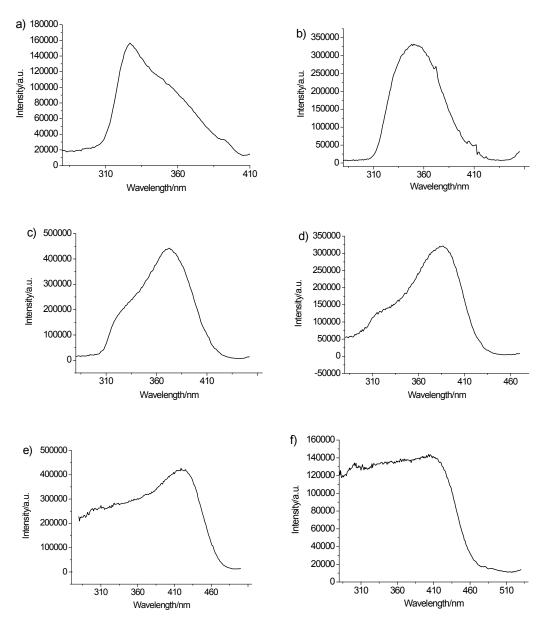
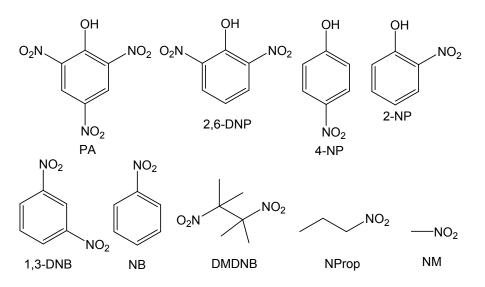




Fig. S9 Zr 3d core level spectrum (left) and XPS survey (right) of ZrBDC-1:1-0.15.

Fig. S10 Zr 3d core level spectrum (left) and XPS survey (right) of **ZrBDC-TCPE0.01%**.

Fig. S11 Zr 3d core level spectrum (left) and XPS survey (right) of **ZrBDC-TCPE0.1%**.

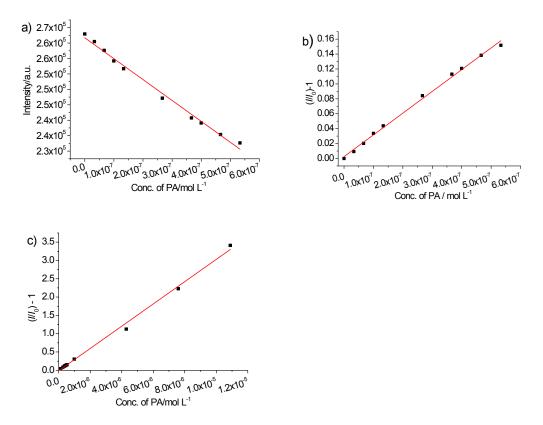
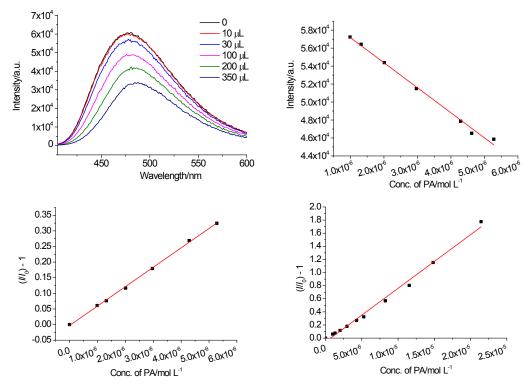
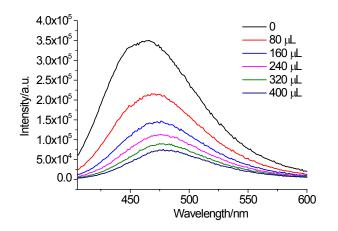
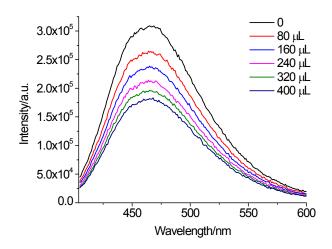
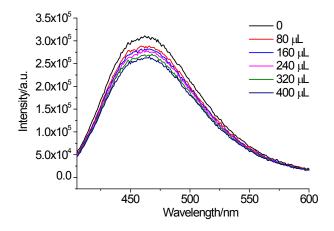

Fig. S12 TG curve of ZrBDC-1:1-0.15 and ZrBDC-TCPE0.01%.

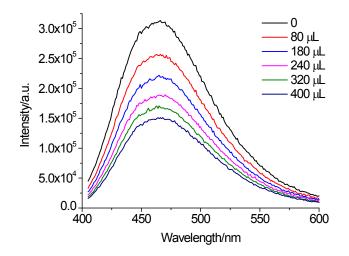

Fig. S13 Excitation spectra of a) **ZrBDC-1:1-0.15** ($\lambda_{em} = 398 \text{ nm}$), b) **ZrBDC-TCPE0.01%** ($\lambda_{em} = 461 \text{ nm}$), c) **ZrBDC-TCPE0.1%** ($\lambda_{em} = 468 \text{ nm}$), d) **ZrBDC-TCPE1%** ($\lambda_{em} = 477 \text{ nm}$), e) **ZrBDC-TCPE10%** ($\lambda_{em} = 521 \text{ nm}$) and f) **ZrTCPE** ($\lambda_{em} = 540 \text{ nm}$) gels dispersed in water (10 g L⁻¹).

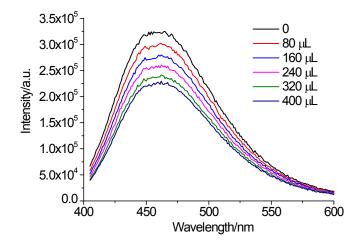

Scheme S1. Nitroaromatic compounds tested for fluorescence quenching titrations.

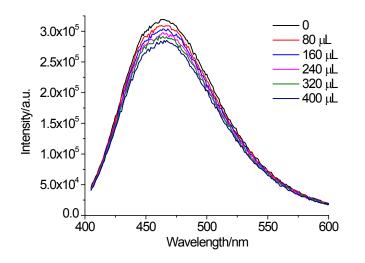

Fig. S14 Linear region of fluorescence intensity of **ZrBDC-TCPE0.01%** gel (10 g L⁻¹) dispersed in water upon addition of PA aqueous solution ($\lambda_{ex} = 363$ nm) ($R^2 = 0.9912$). b) Stern-Volmer traces of PA (0.1 mmol L⁻¹) in water dispersion of **ZrBDC-TCPE0.01%** (10 g L⁻¹) ($R^2 = 0.9962$) (0 – 0.53 µmol L⁻¹) with $K_{SV} = 2.91 \times 10^5$ L mol⁻¹. c) Stern-Volmer traces of PA (0.1 mmol L⁻¹) in water dispersion of **ZrBDC-TCPE0.01%** gel (10 g L⁻¹) ($R^2 = 0.9963$) (0 – 10.09 µmol L⁻¹) with $K_{SV} = 3.04 \times 10^5$ L mol⁻¹.

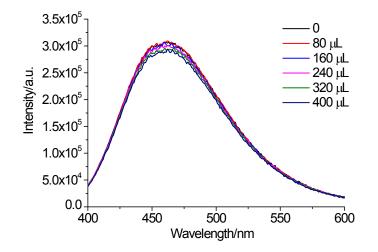

Fig. S15 a) Fluorescence spectra of **ZrBDC-TCPE0.1%** gel dispersed in water (10 g L⁻¹) upon incremental addition of an aqueous solution of PA (0.1 mmol L⁻¹) ($\lambda_{ex} = 383$ nm). b) Linear region of fluorescence intensity of **ZrBDC-TCPE0.1%** gel dispersed in water (10 g L⁻¹) upon addition of PA solution ($R^2 = 0.9963$). c) Stern-Volmer traces of PA (0.1 mmol L⁻¹) in water dispersion of **ZrBDC-TCPE0.1%** gel (10 g L⁻¹) ($R^2 = 0.9935$) (0 – 1 µmol L⁻¹) with $K_{SV} = 1.82 \times 10^5$ L mol⁻¹. d) Stern-Volmer traces of PA (0.1 mmol L⁻¹) in water suspension of **ZrBDC-TCPE0.1%** gel (10 g L⁻¹) ($R^2 = 0.9935$) (0 – 1 µmol L⁻¹) with $K_{SV} = 1.82 \times 10^5$ L mol⁻¹. d) Stern-Volmer traces of PA (0.1 mmol L⁻¹) in water suspension of **ZrBDC-TCPE0.1%** gel (10 g L⁻¹) ($R^2 = 0.9710$) (0 – 16.5 µmol L⁻¹) with $K_{SV} = 1.69 \times 10^5$ L mol⁻¹.

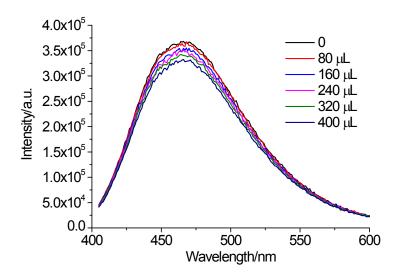

Fig. S16 a) Fluorescence spectra of **ZrBDC-TCPE1%** gel dispersed in water (10 g L⁻¹) upon incremental addition of an aqueous solution of PA (0.1 mmol L⁻¹) ($\lambda_{ex} = 393$ nm). b) Linear region of fluorescence intensity of **ZrBDC-TCPE1%** gel (10 g L⁻¹) dispersed in water upon addition of PA solution ($R^2 = 0.9931$). c) Stern-Volmer traces of PA (0.1 mmol L⁻¹) in water dispersion of **Zr-BDC-TCPE1%** gel (10 g L⁻¹) ($R^2 = 0.9988$) (0 - 5.28 µmol L⁻¹) with $K_{SV} = 6.22 \times 10^4$ L mol⁻¹. d) Stern-Volmer traces of PA (0.1 mmol L⁻¹) in water dispersion of **Zr-BDC-TCPE1%** gel (10 g L⁻¹) ($R^2 = 0.9988$) (0 - 21.45 µmol L⁻¹) with $K_{SV} = 8.18 \times 10^4$ L mol⁻¹.

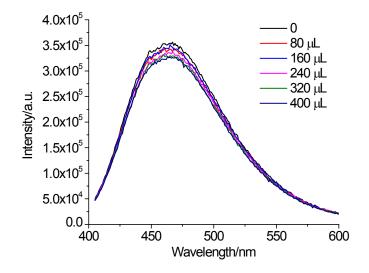

Fig. S17 Emission spectra of **ZrBDC-TCPE0.01%** gel dispersed in water (10 g L⁻¹) upon incremental addition of PA aqueous solution (0.1 mmol L⁻¹) ($\lambda_{ex} = 363$ nm).

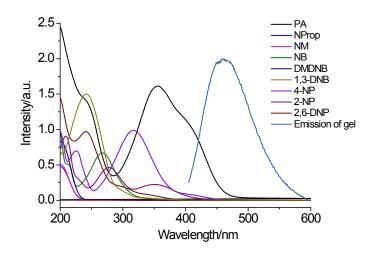

Fig. S18 Emission spectra of **ZrBDC-TCPE0.01%** gel dispersed in water (10 g L⁻¹) upon incremental addition of 2,6-DNT aqueous solution (0.1 mmol L⁻¹) ($\lambda_{ex} = 363$ nm).


Fig. S19 Emission spectra of **ZrBDC-TCPE0.01%** gel dispersed in water (10 g L⁻¹) upon incremental addition of 1,3-DNB aqueous solution (0.1 mmol L⁻¹) ($\lambda_{ex} = 363$ nm).


Fig. S20 Emission spectra of **ZrBDC-TCPE0.01%** gel dispersed in water (10 g L⁻¹) upon incremental addition of 4-NP aqueous solution (0.1 mmol L⁻¹) ($\lambda_{ex} = 363$ nm).


Fig. S21 Emission spectra of **ZrBDC-TCPE0.01%** gel dispersed in water (10 g L⁻¹) upon incremental addition of 2-NP aqueous solution (0.1 mmol L⁻¹) ($\lambda_{ex} = 363$ nm).


Fig. S22 Emission spectra of **ZrBDC-TCPE0.01%** gel dispersed in water (10 g L⁻¹) upon incremental addition of DMDNB aqueous solution (0.1 mM) ($\lambda_{ex} = 363$ nm).


Fig. S23 Emission spectra of **ZrBDC-TCPE0.01%** gel dispersed in water (10 g L⁻¹) upon incremental addition of NProp aqueous solution (0.1 mmol L⁻¹) ($\lambda_{ex} = 363$ nm).

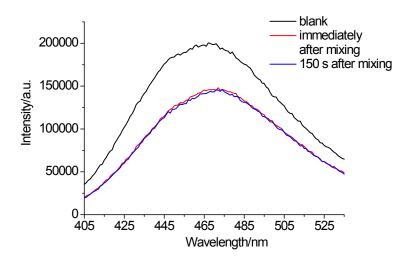

Fig. S24 Emission spectra of **ZrBDC-TCPE0.01%** gel dispersed in water (10 g L⁻¹) upon incremental addition of NB aqueous solution (0.1 mmol L⁻¹) ($\lambda_{ex} = 363$ nm).

Fig. 25 Emission spectra of **ZrBDC-TCPE0.01%** gel dispersed in water (10 g L⁻¹) upon incremental addition of NM aqueous solution (0.1 mmol L⁻¹) ($\lambda_{ex} = 363$ nm).

Fig. S26 Spectral overlap between the UV-vis adsorption spectra of analytes (0.1 mmol L⁻¹) in aqueous solutions and the emission spectrum of **ZrBDC-TCPE0.01%** gel dispersed in water (10 g L⁻¹).

Fig. S27 The fluorescent spectra of quenching efficiency vs. exposure time, blank dispersion of **ZrBDC-TCPE0.01%**, collected immediately after mixing with 80 μ L of PA aqueous solution (0.1 mmol L⁻¹), collected 150 s after mixing.