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An example of computationally docking a compound-polymer complex 

Here we demonstrate the second approach that has been proposed in the text, which is 

aimed at providing systematic guidance in the investigation of the interactions and 

binding affinity between potential ZIKV inhibitors and a drug delivery system. 

Based on Srivastava et al (2016) which highlights the role of polymers and their 

advantages as formulations and in devices 1, an example of transporting potential 

ZIKV inhibitors, conjugated to a polymer would be an ideal example. Tosi et al 

(2013) has shown that the polymer, poly (D,L-lactide-co-glycolide) (PLGA) has the 

ability to effectively cross the BBB and can be used as a drug delivery system. 2 The 

following potential ZIKV inhibitors have been docked to PLGA via molecular 

docking and the free binding energies of different poses were compared: NITD008, 

sofosbuvir, sertraline, ribavirin and 2-C-methyladenosine (Table 3). UCSF Chimera 

and AutoDock Tools were used to dock these compounds and calculate the free 

binding energies.
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Figure S1: Potential ZIKV Inhibitors docked with a polymer showing the estimated 

binding affinity of the best compound-polymer pose.

In Figure S1, 2-C-methyladenosine, sertraline and sofosbuvir scored the lowest free 

binding energy of -2.0 kcal/mol and therefore have stronger binding than NITD008 

and ribavirin to the polymer. 

Technical Guidelines

A number of tools are available which can be utilized to screen for compounds on 

chemical databases based on a set of criteria. Structure-based virtual screening will 

allow searching through combinatorial chemistry libraries for compounds that may be 

potential inhibitors of a target protein and will rapidly dock them into the 3D target's 

active pocket.3,4 Screening of potential compounds can be carried out on ZINC 

Database 5 or ZincPharmer 6. Several molecules may have the potential to bind to the 



active site of the protein; therefore, the free binding energy of every pose is 

calculated. Binding affinity estimations may be carried out using molecular docking 

approaches and free binding energy calculations. This will generate a scoring function 

to rank the ligands which best suit the target protein.3 Computational software that 

can be used to calculate binding affinities include UCSF Chimera 7 and AutoDock 

Vina.8 Protein-ligand complexes of lowest free binding energy may be used as 

inhibitor candidates, which may subsequently be validated via molecular dynamic 

simulations as binding affinity predictions may not be one hundred percent 

accurate.4,9–12

Molecular dynamic simulations uses Newton’s equations of motion to analyze the 

physical movements that occur between the atoms and molecules involved in a 

docking pose over a course of time.13 Force fields are used to calculate potential 

energies of particles and electrostatic forces that occur between atoms in a system.14 

Some force fields that can be used for molecular dynamic simulations include NAMD 

15, Gromacs 16, Amber 17 and Charrm 18. Complexes can also be simulated through 

lipid bilayer, in cases where potential compounds need to enter certain target tissues 

which are surrounded by lipophilic membranes. This can give a prediction as to 

whether or not the potential compound will be able to pass through the lipid 

membrane or not. Software that can be used to generate a 3D lipid bilayer model 

include CHARRM-GUI and Visual Molecular Dynamics (MEMBPLUGIN).19,20
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