Supporting Information

Highly efficient FRET from aggregation-induced emission to BODIPYemission based on host-guest interaction for mimicking the light-harvesting system
Shuai Wang, ${ }^{a}$ Jia-Hai Ye,*a Zhong Han, ${ }^{b}$ Zheng Fan, ${ }^{a}$ Caijiang Wang, ${ }^{a}$ Cancan Mu, ${ }^{a}$ Wenchao Zhang ${ }^{a}$ and Weijiang He*b
a School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China, E-mail: yejiahai@njust.edu.cn
${ }^{\mathrm{b}}$ State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China, E-mail:heweij69@nju.edu.cn
Table of Contents
General Information S2
General Procedure for UV-Vis and Fluorescence Studies. S2
Synthesis and Characterization of Chemodosimeter M1 S2-
S4
Synthesis and Characterization of Chemodosimeter M2 S4-
S5
UV-vis and Fluorescence experiments and TEM Imaging S5-S13
References S13
Calculation of FRET Efficiency. S13-
14
${ }^{1} \mathrm{H}$ NMR spectra tirtation. S15- S16
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and MS Spectra of Chemodosimeter M1 S16-S19

9

General Information

All chemical reagents were commercially available and of analytical grade without further purification except especially noted.The stock solutions of $\mathrm{K}+$ were prepared form KCl with doubly distilled water. Melting points were measured with a shanghai WRS-1B digital melting point apparatus. ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) were measured on a Bruker Avance III spectrometer. Electrospray mass spectra (ESI-MS) were recorded on a Thermofisher LCQ. Elemental analyses were obtained using a Perkin-Elmer-240C analyzer. Fluorescence spectra were determined on a Perkin Elmer LS-55. UV-vis spectra were measured on a Shimadzu UV3600. Transmission electron micrographs were obtained using JEOL 2010 transmission electron microscope (TEM) at an accelerating voltage of 200 KV . Stock solutions for analysis were prepared ($1 \times 10^{-5} \mathrm{~mol}^{-L^{-1}}$ for compound $\mathbf{M 1}$ or $\mathbf{M} \mathbf{2}$ in THF: $\mathrm{H}_{2} \mathrm{O}=1: 9, \mathrm{v} / \mathrm{v}$) immediately before the experiments.

General Procedure for UV-Vis and Fluorescence Studies

Stock solutions of metal ions were prepared $\left(1 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\right)$ in deionized water, A stock solution of compound $\mathbf{M} 2$ were prepared $\left(1 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\right)$ in THF: $\mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$. A stock solution of compounds $\mathbf{M 1}$ or $\mathbf{M 2}\left(1 \times 10^{-5} \mathrm{~mol}^{-\mathrm{L}^{-1}}\right)$ was prepared in THF: $\mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$ immediately before the experiments. In experiments, each time a 3 mL solution of $\mathbf{M 1}(10 \mu \mathrm{M})$ was filled in a quartz optical cell of 1 cm optical path length, and then the $\mathbf{M} \mathbf{2}(10 \mathrm{mM})$ stock solution was added. For fluorescence measurements, fluorescence intensity obtained with the band path 320-600nm upon excitation at 305 nm and band path 460-660 nm upon excitation at 450 nm .
Synthesis and Characterization of Chemodosimeter M1

Fig. S1 Synthetic pathway of compound M1
Compound 1 was synthesized according to known procedure. ${ }^{\text {S1 (a) }}$
Synthesis of compound 2
(1) A 500 ml three-necked round-bottom flask were added $B_{1}(80 \mathrm{~g}, 0.532 \mathrm{~mol})$ with 50 ml THF, a solution of NaOH in Deionized water was dropwised into the mixture, then a solution of TsCl in THF was added in ice bath. The mixture was stirred for 5 h in room temperature. The solvent was removed at reduced pressure, the residue was dissolved in EA, washed with water several times, The organic layer was dried over $\mathrm{Mg} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The product B_{2} (38 g , yield: 89.2\%) was obtained.
(2) Into a nitrogen-filled 500 ml three-necked round-bottom flask were added \mathbf{B}_{2} ($15.1 \mathrm{~g}, 49.7$ mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(9.6 \mathrm{~g}, 69 \mathrm{mmol})$, 1,2-benzenedio($2.5 \mathrm{~g}, 22.7 \mathrm{mmol}$) and 300 ml MeCN. After refluxing overnight, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The red oil product $\mathbf{B}_{\mathbf{3}}$ was obtained.
(3) Into a 500 ml three-necked round-bottom flask were added $\mathbf{B}_{\mathbf{3}}$ with 300 ml THF,the solution was cooled to $4^{\circ} \mathrm{C}$ and the solution of NaOH was added dropwise. After stirring a few minutes a solution of TsCl in THF was added dropwise, the reaction mixture was stirred 24 hours at room temperature. The solution was concentrated under reduced pressure, dissolved in DCM, washed several times, dried over MgSO_{4} and filtered, the filtrate was concentrated under reduced pressure. The crude product was purified in a silica gel column using PE as an eluent to yield \mathbf{B}_{4} as Yellow oil (5.1g, yield: 66.1\%).
(4) Into a nitrogen-filled 500 ml three-necked round-bottom flask were added \mathbf{B}_{4} ($8.3 \mathrm{~g}, 12.15$ mmol), 3,4-dihydroxy-benzaldehyd ($1.62 \mathrm{~g}, 11.72 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(8 \mathrm{~g}, 24.8 \mathrm{mmol})$ and 200 ml DMF. After refluxing 4 days, the mixture was filtered and concentrated. The crude product was purified in a silica gel column using PE-EA (v/v=1:3) as an eluent to yield B_{5} as a white solid (2.08 g , yield: $37.3 \%)$.
(5) Into a 250 ml three-necked round-bottom flask were added $B_{5}(1.4 \mathrm{~g}, 2.94 \mathrm{mmol})$ with 100 ml THF/MeOH ($\mathrm{v} / \mathrm{v}=1: 1$), the reaction mixture was cooled to $4^{\circ} \mathrm{C}$ and then $\mathrm{NaBH}_{4}(0.38 \mathrm{~g}, 10 \mathrm{mmol})$ was added. After stirring at room temperature overnight, the solution was poured into water and extracted with DCM several times, The organic layer was combined and washed with water and brine, and then dried over MgSO_{4}.After filtration and solvent evaporation, the compound 2 was obtained (1.3g,yield 90\%).

Synthesis of compound M1

In a three-necked flask, compound 2 ($480 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 50 ml of distilled THF. The solution was cooled to $4^{\circ} \mathrm{C}$, and then $\mathrm{NaH}(480 \mathrm{mg}, 20 \mathrm{mmol})$ was added.After stirring a few minutes, the solution of compound $\mathbf{1}$ ($220 \mathrm{mg}, 0.42 \mathrm{mmol}$) in 20 ml of distilled THF was added dropwise into the mixture with continuous stirring for 40 minutes. After refluxing overnight,the solution was concentrated under reduced pressure,dissolved in DCM ,washed several times, dried over MgSO_{4} and filtered , the filtrate was concentrated under reduced pressure. The crude product was purified in a silica gel column using PE-EA ($\mathrm{v} / \mathrm{v}=1: 3$) as an eluent to yield $\mathbf{M 1}$ as white solid (188.6 mg , yield 34.2%). M.P. $53.0^{\circ} \mathrm{C}-55.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (TMS, ppm): 7.08 ($\mathrm{d}, J=6.5,3.0 \mathrm{~Hz}, 10 \mathrm{H}$), $7.00(\mathrm{~s}, 8 \mathrm{H}), 6.87(\mathrm{t}, J=2.6 \mathrm{~Hz}, 10 \mathrm{H}), 6.82(\mathrm{~s}, 4 \mathrm{H}), 4.41(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 8 \mathrm{H})$, 4.14 ($\mathrm{d}, \mathrm{J}=5.5,3.0 \mathrm{~Hz}, 16 \mathrm{H}$), $3.91\left(\mathrm{~m}, J=2.2 \mathrm{~Hz}, 16 \mathrm{H}\right.$), $3.83(\mathrm{~s}, 16 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}, \mathrm{CDCl} 3)$ δ (TMS, ppm): 148.97, 148.50, 148.33, 143.68, 143.12, 140.73, 136.29, 134.48, 131.35, 127.67, 127.63, 127.21, 126.44, 121.47, 121.05, 119.89, 114.18, 113.98, 113.82, 113.05, 77.40, 77.14, 76.89, 69.91, 69.90, 69.53, 69.38, 64.96; ESI-MS: $m / z=1335.80\left(\mathrm{M}+\mathrm{Na}^{+}\right)$. Element analysis (\%) Calca. For $\mathrm{C}_{78} \mathrm{H}_{88} \mathrm{O}_{18}$: $\mathrm{C}, 71.32 ; \mathrm{H}, 6.75$. Found: $\mathrm{C}, 71.56 ; \mathrm{H}, 6.59$.

Synthesis and Characterization of Chemodosimeter M2

Fig. S2 Synthetic pathway of compound $\mathbf{M}_{\mathbf{2}}$
Compound $\mathbf{3}$ was synthesized according to known procedure. ${ }^{51}$ (b)

Synthesis of compound 4

(1) Into a 500 ml three-necked round-bottom flask were added 4-Hydroxybenzaldehyde ($4.9 \mathrm{~g}, 40$ mmol), Propargyl bromide ($14.28 \mathrm{~g}, 120 \mathrm{mmol}$) and 300 ml acetone with stirring for a few minutes, then Potassium carbonate ($11 \mathrm{~g}, 80 \mathrm{mmol}$) was added. After refluxing for 4 hours, the reaction mixture was cooled to room temperature, the solution was filtered and the filtrate was concentrated under reduced pressure. The residue was dissolved in DCM, washed with water and brine several times, dried over MgSO_{4} and filtered, the filtrate was concentrated under reduced pressure, recrystallization with PE, the white solid was obtained (5.76 g , yield: 90%).
(2) Into a 500 ml three-necked round-bottom flask were added above white solid ($16 \mathrm{~g}, 0.1 \mathrm{~mol}$), benzylamine ($22 \mathrm{~g}, 0.2 \mathrm{~mol}$) and 250 ml DCM/MeOH ($\mathrm{v} / \mathrm{v}=3: 2$), the mixture was stirred for
overnight, then the solution was cooled to $4{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(3.8 \mathrm{~g}, 0.1 \mathrm{~mol})$ was added with continuous stirring for 40 minutes. After stirring for overnight at room temperature the solution was poured into water and extracted with DCM several times, washed with brine and then dried over MgSO_{4}.After filtration and solvent evaporation, the crude product was purified in a silica gel column using PE-EA ($\mathrm{v} / \mathrm{v=5:1}$) as an eluent to give compound 4 as colourless oil (12 g , yield: 56%).

Synthesis of compound M2

Into a 50 ml three-necked round-bottom flask were added compound 3 ($410 \mathrm{mg}, 1.0 \mathrm{mmol}$), compound 4 ($251 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(400 \mathrm{mg}), \mathrm{VCNa}(640 \mathrm{mg})$ and 25 ml THF/ $\mathrm{H}_{2} \mathrm{O}$ ($\mathrm{V} / \mathrm{V}=4: 1$).The reaction mixture was stirred for 12 hours at room temperature, and then filtered. The filtrate was concentrated under reduced pressure, and the residue was dissolved in DCM, washed with brine several times and dried over MgSO_{4}. After filtration and solvent evaporation, the crude product was purified in a silica gel column using PE-EA ($\mathrm{v} / \mathrm{v}=3: 1$) as an eluent to give purple solid compound $\mathbf{M 2}$ (370 mg ,yield 56%). M.P. $124.1^{\circ} \mathrm{C}-126.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO$\left.{ }_{d 6}\right) \delta(T M S, p p m): 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.18(\mathrm{~m}, 9 \mathrm{H}), 7.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.16(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=23.6 \mathrm{~Hz}, 4 \mathrm{H})$, $2.44(\mathrm{~s}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}{ }_{d 6}\right) \delta(\mathrm{TMS}, \mathrm{ppm}): 154.01,142.05,130.40$, $128.57,128.53,127.45,127.36,125.98,124.49,120.61,114.63,113.72,60.36,51.26,50.76$, 48.41, 38.80, 38.38, 13.56; ESI-MS: $\mathrm{m} / \mathrm{z}=661.24\left[\mathrm{M}+\mathrm{H}^{+}\right]$. Element analysis (\%) Calca. For $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{BF}_{2} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, 66.09; H, 5.95; N, 12.72. Found: C, $66.18 ; \mathrm{H}, 5.87 ; \mathrm{N}, 12.65$.

Emission Spectra of compound M 1 in different ratio of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$

Fig. S3: Fluorescence spectra of compound $\mathbf{M 1}(10 \mu \mathrm{M})$ in THF/ $\mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ medium ($\lambda_{\text {ex }}$: 305 nm)

Absorption and Emission Spectra of compound M_{2} in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 9, v / v)$

Figure S4:(a) Absorbance of $\mathbf{M}_{\mathbf{2}}$, (b) Absorbance of compound $\mathbf{M}_{\mathbf{1}}(10 \mu \mathrm{M})$ with $\mathbf{M}_{\mathbf{2}}$ (1.0 equiv) in THF $/ \mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$, (c) fluorescence spectra of compound $\mathbf{M}_{2}(10 \mu \mathrm{M})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$ medium ($\lambda_{\text {ex }}: 305 \mathrm{~nm} \& 450 \mathrm{~nm}$), (d) fluorescence spectra of compound $\mathbf{M}_{2}(10 \mu \mathrm{M})$ in different ratio of THF/ $\mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$ medium ($\lambda_{\text {ex }}: 450 \mathrm{~nm}$), (e)Absorbance of compound $\mathbf{M}_{\mathbf{2}}(10 \mu \mathrm{M})$ in THF $/ \mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$ and fluorescence spectra of compound $\mathbf{M}_{1}(10 \mu \mathrm{M})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$ medium ($\lambda_{\text {ex: }} 305 \mathrm{~nm}$).

Emission Spectra of compound M1 or M2 and in the presence of Acid or Base

Figure S5: (a) Fluorescence spectra of compound $\mathbf{M 1}(10 \mu \mathrm{M})$ with acid or base ($40 \mu \mathrm{M}, 4$ equiv) in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$ medium ($\lambda_{\mathrm{ex}}: 305 \mathrm{~nm}$),(b)Fluorescence spectra of compound $\mathbf{M} 2(10 \mu \mathrm{M})$ with acid or base ($40 \mu \mathrm{M}, 4$ equiv) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$ medium ($\left.\lambda_{\text {ex }}: 450 \mathrm{~nm}\right)$.

Figure S6: (a)Fluorescence spectra of compound $\mathbf{M 1}(10 \mu \mathrm{M})$ towards $\mathbf{M} 2(0,0.03,0.06,0.09$, $0.12,0.15,0.18,0.21,0.24,0.27,0.30,0.33 .0 .36$ equiv) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$ medium ($\lambda_{\text {ex }}$:

305 nm), (b) plot of fluorescence depending on the equiv of $\mathbf{M} \mathbf{2}$ at 465 nm ,(C)plot of fluorescence depending on the equiv of $\mathbf{M} \mathbf{2}$ at 510nm.

The observed visual color change to the reaction

(a) Visible light

(b) UV light (365 nm lamp)

Figure S7: Observed visual color and fluorescence change of compound M1 ($10 \mu \mathrm{M}$) upon addition of 0.12 equiv of compound $\mathbf{M 2}$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$ medium for 3 hours.

Diameter of $\mathbf{M}_{\mathbf{1}}$

Figure S8. DLS data of the M_{1} aggregated practicle

Figure S9. (a) Imagine of $\mathbf{M 1}(10 \mu \mathrm{M})$ in TEM at 1000 nm , (b) Imagine of $\mathbf{M 1}(10 \mu \mathrm{M})$ upon addition of $\mathbf{M} \mathbf{2}$ (0.3equiv) in TEM at 200nm, (c)Imagine of $\mathbf{M}_{\mathbf{1}}(10 \mu \mathrm{M})$ with $\mathbf{M}_{\mathbf{2}}$ (1.0equiv) in TEM at 200nm.

The Fluorescence Titration Spectra of M1 under Acid and Base conditiosn

(a)

Figure S10: (a) Fluorescence spectra of compound $\mathbf{M}_{\mathbf{1}}(10 \mu \mathrm{M})$ with Base towards $\mathbf{M}_{\mathbf{2}}(0,0.03$, $0.06,0.09,0.12,0.15,0.18$ equiv) in THF/ $\mathrm{H}_{2} \mathrm{O}(1: 9, \mathrm{v} / \mathrm{v})$ medium ($\lambda_{\text {ex }}: 305 \mathrm{~nm}$),(b) fluorescence spectra of compound $\mathbf{M}_{\mathbf{1}}(10 \mu \mathrm{M})$ with Acid towards $\mathbf{M}_{\mathbf{2}}(0,0.03,0.06,0.09,0.12,0.15,0.18$ equiv) in THF/H2O (1:9, v/v) medium ($\left.\lambda_{\text {ex }}: 305 \mathrm{~nm}\right)$.

The Fluorescence Titration Spectra of M1 and M2 under Acid and Base conditiosn

Figure

Figure S11: Fluorescence spectra of compound $\mathbf{M}_{\mathbf{1}}(10 \mu \mathrm{M})$ with $\mathbf{M}_{\mathbf{2}}$ (0.12 equiv) towards Base (0 , $0.03,0.06,0.09$ equiv) and $\operatorname{Acid}(0,0.03,0.06,0.09,0.12,0.15,0.18,0.21,0.24 e q u i v)$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:9, v/v) medium ($\lambda_{\text {ex }}: 305 n m$).

Fluorescence Titration Spectra of compound $M_{1} \& M_{2}$ upon addition of \mathbf{K}^{+}

Figure S12: Fluorescence spectra of compound $\mathbf{M 1}(10 \mu \mathrm{M})$ with $\mathbf{M} 2\left(0.50\right.$ equiv) towards $\mathrm{K}^{+}(0$, $0.03,0.06,0.09,0.12,0.15,0.18,0.21,0.24,0.27,0.30,0.42,0.54,0.66,0.78,0.90,1.20,1.50$, 1.80, 2.10, 2.40, 2.70, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, 10.00equiv) in THF/H2O (1:9, v/v) medium ($\lambda_{\text {ex }}: 305 \mathrm{~nm}$),

References:

S1: (a) Liang, Jing et al . J. Mater. Chem. B, 2014, 2,4363
(b) J. Ye, W. Ye, C. Xiao, Y. Chen, G. Wang, and W. Zhang, Chin. J. Org. Chem., 2012, 32, 1503.

Calculation of FRET Efficiency:

$$
\mathrm{E}=1-\mathrm{F}_{\mathrm{DA}} / \mathrm{F}_{\mathrm{D}}
$$

Where $F_{D A}$ is the integrated fluorescence intensity of donor in presence of acceptor and F_{D} is in absence of acceptors.

Efficiency in each case has been calculated based on the integrated donor emission intensities in absence and presence of acceptors.

Efficiency $=1-F_{D A} / F_{D=}[1-(36088060 / 516434005)] \times 100=93 \%$

Figure S13. Emission spectra of donor $\mathbf{M 1}$ in absence of acceptor M2. The integrated area for the M_{1} contribution after titration has been marked in red line.

The change of the ${ }^{1} \mathrm{H}$ NMR spectra after the addition of acid and base

(B)

Figure S14. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): (a) ${ }^{1} \mathrm{H}$ NMR spectrum of host $\mathbf{M 1}(1.0 \mathrm{mM})$, (b) ${ }^{1} \mathrm{H}$ NMR spectrum of host $\mathbf{M 1}(1.0 \mathrm{mM})$ upon addition of 0.5 equiv. of guest $\mathbf{M 2}$, (c) ${ }^{1} \mathrm{H}$ NMR spectrum of host $\mathbf{M 1}(1.0 \mathrm{mM})$ upon addition of 1.0 equiv. of guest $\mathbf{M} 2$ in CDCl_{3}, (d) ${ }^{1} \mathrm{H}$ NMR spectrum of host-guest system in (b) upon addition of 2.0 equiv. of $\mathrm{CF}_{3} \mathrm{COOH}$, (e) ${ }^{1} \mathrm{H} N M R$ spectrum of host-guest system in (c) upon addition of 4.0 equiv. of DBU。
(A): $\quad \delta$ (TMS,ppm):
(a) $H_{a}: 4.190, H_{b}: 3.941, H_{c}: 3.842, H_{k} \& H_{l}: 4.452$
(b) H_{a} :
$4.192, H_{b}: 3.946, H_{c}: 3.861, H_{k} \& H_{l}: 4.453, H_{t}: 5.249, H_{v}: 4.631, H_{w}: 4.850$, (c)
$H_{a}: 4.192, H_{b}: 3.945, H_{c}: 3.860, H_{k} \& H_{l}: 4.453, H_{t}: 5.248, H_{v}: 4.629, H_{w}: 4.848$,
(d) $H_{a}: 4.271 \& 4.165, H_{b}: 3.873, H_{c}: 3.745, H_{k} \& H_{l}: 4.485, H_{t}: 5.245 \& 5.223, H_{v}: 4.686$ (4.699,4.672), $H_{w}: 4.893$, (e) $H_{a}: 4.214, H_{b}: 3.931, H_{c}: 3.834, H_{k} \& H_{l}: 4.466, H_{t}$: $5.265, H_{v}: 4.637, H_{w}: 4.865$
(B): $\quad \delta(T M S, p p m): ~(a) H_{d}-H j: 6.929 \sim 6.877$, (b) $H_{d}-H j: 6.927 \sim 6.873, H_{u}: 7.886$,
(c) $\mathrm{H}_{\mathrm{d}}-\mathrm{Hj}: 6.926 \sim 6.872, \mathrm{H}_{u}: 7.885$, (d) $\mathrm{H}_{\mathrm{d}-}-\mathrm{Hj}: 7.035 \sim 6.985, \mathrm{H}_{u}: 8.012$, (e) $\mathrm{H}_{d^{-}}$ $\mathrm{Hj}: 6.955 \sim 6.902, \mathrm{H}_{\mathrm{u}}: 7.922$
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS spectrum

Figure S15: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{M}_{\mathbf{1}}$ in CDCl_{3}

Figure S16: ${ }^{13} \mathrm{C}$ NMR spectrum of compound \mathbf{M}_{1} in CDCl_{3}

20160702 fz 160703202645 \#10 RT: 0.12 AV: 1 NL: 1.73E7
T: + c Q1MS [960.00-1490.10]

Figure S17: MS spectrum of compound $\mathbf{M}_{\mathbf{1}}$

Figure S18: ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of compound $\mathbf{M}_{\mathbf{2}}$ in d6-DMSO

Figure S19: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{M}_{\mathbf{2}}$ in d6-DMSO

Figure S20: MS spectrum of compound $\mathbf{M}_{\mathbf{2}}$

