Structures, stabilities and spectral properties of

metalloborospherenes MB₄₀^{0/-} (M=Cu, Ag, and Au)

Shi-Xiong Li,*ab Zheng-Ping Zhang,*b Zheng-Wen Long,c and Shui-Jie Qind

^aSchool of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China. E-mail: leesxoptics@163.com

^bCollege of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China. E-mail: zpzhang@gzu.edu.cn

^cCollege of Science, Guizhou University, Guiyang 550025, China

^d Key Lab of Photoelectron Technology and Application, Guizhou University, Guiyang 550025, China

Тор

(a) Cu&B_{40}{}^{0\!/\!-} path: Ly (0.00) [0.00]

(b) Cu&B $_{40}^{0/-}$ path: Lz (0.33) [0.08]

Тор

Side

Тор

Side

(e) $Cu\&B_{40}^{-}$ path: Lxyz [0.60]

(f) Cu&B₄₀^{0/-} path: Lxz (0.81) [0.54]

Side

(h) $Cu\&B_{40}^{-}$ path: Lxy [0.33]

Side

Тор

(k) $Cu@B_{40}^{0/-}$ path: Lxy (1.15) [1.04]

Fig. S1 Optimized structures of metalloborospherenes $\text{CuB}_{40}^{0/-}$ for the two local minima (one corresponds to the endohedral $\text{Cu}\&\text{B}_{40}^{0/-}$, another corresponds to the exohedral $\text{Cu}@\text{B}_{40}^{0/-}$) in the six paths. The round brackets denote the relative energies (eV) of neutral metalloborospherenes CuB_{40} , the square brackets denote the relative energies (eV) of anionic metalloborospherenes CuB_{40}^{-} .

Side

(b) Ag&B₄₀ path: Lxyz (0.07)

Side

(e) Ag&B₄₀^{0/-} path: Lz (0.22) [0.31]

(g) Ag&B₄₀^{0/-} path: Lxy (0.39) [0.84]

Side

Тор

(h) Ag@B₄₀^{0/-} paths: Ly, Lz, Lxy, Lxz, Lyz, and Lxyz (1.19) [1.53] Fig. S2 Optimized structures of metalloborospherenes AgB₄₀^{0/-} for the two local minima (one corresponds to the endohedral Ag&B₄₀^{0/-}, another corresponds to the exohedral Ag@B₄₀^{0/-}) in the six paths. The round brackets denote the relative energies (eV) of neutral metalloborospherenes AgB₄₀, the square brackets denote the relative energies (eV) of anionic metalloborospherenes AgB₄₀⁻.

Side

Side

(e) Au&B₄₀^{0/-} path: Lxy (0.24) [0.76]

Side

TopSide(h) Au@B40paths: Ly, Lz, Lxy, Lxz, Lyz, and Lxyz(2.50)

Тор

path: Lxz [2.90] (j) Au@ B_{40}^{-}

(k) Au@B₄₀⁻

path: Ly [3.18]

Fig. S3 Optimized structures of metalloborospherenes $AuB_{40}^{0/-}$ for the two local minima (one corresponds to the endohedral $Au\&B_{40}^{0/-}$, another corresponds to the exohedral $Au@B_{40}^{0/-}$) in the six paths. The round brackets denote the relative energies (eV) of neutral metalloborospherenes AuB_{40} , the square brackets denote the relative energies (eV) of anionic metalloborospherenes AuB_{40}^{-} .

Тор

(b)

(c)

(d)

Тор

(e)

Fig. S4 Spin densities (isosurface value = 0.0004, blue denotes the positive value (up-spin component) and green denotes the negative value (down-spin component)) of

$$\label{eq:metalloborospherenes} \begin{split} \text{metalloborospherenes} \ & \text{MB}_{40} \ (\text{M=Cu}, \text{Ag}, \text{and Au}). \ (a): \ & \text{C}_{\text{s}} \ \text{Cu} \& \text{B}_{40}, \ (b): \ & \text{C}_{\text{s}} \ \text{Cu} \& \text{B}_{40}, \ (c): \ & \text{C}_{\text{s}} \ \\ & \text{Ag} \& \text{B}_{40}, \ (d): \ & \text{D}_{2d} \ \text{Ag} @ \text{B}_{40}, \ (e): \ & \text{C}_{\text{s}} \ \text{Au} \& \text{B}_{40}, \ (f): \ & \text{D}_{2d} \ \text{Au} @ \text{B}_{40}. \end{split}$$

	Calculated VDEs(eV)						
	Cu&B ₄₀ -	Cu@B ₄₀ -	Ag&B ₄₀ -	Ag@B ₄₀ -	Au&B ₄₀ -	Au@B ₄₀ -	
1	2.46	2.64	2.98	2.63	3.46	3.60	
2	3.22	3.49	4.34	3.34	4.45	4.17	
3	3.25	3.50	4.37	3.34	4.52	4.38	
4	3.38	3.80	4.39	3.64	4.54	4.52	
5	3.70	4.00	4.50	3.75	4.63	4.53	
6	4.03	4.19	4.57	4.15	4.76	4.60	
7	4.10	4.21	4.60	4.17	4.84	4.64	
8	4.27	4.32	4.64	4.17	4.99	4.87	
9	4.37	4.33	4.7	4.21	5.17	4.91	
10	4.39	4.36	4.75	4.40	5.35	5.23	
11	4.48	4.48	4.84	4.40	5.44	5.40	
12	4.51	4.50	4.90	4.40	5.62	5.53	
13	4.58	4.55	5.50	4.50	5.66	556	
14	4.77	4.56	5.51	4.53	5.75	5.62	
15	4.82	4.60		4.6		5.87	
16	4.95	4.62		4.62		5.88	
17	4.96	4.69		4.65		5.88	
18	4.98	4.70		4.71			
19	4.99	4.85		4.71			
20		5.05		4.91			
21		5.06		5.15			
22				5.22			
23				5.22			

Table S1. Calculated VDEs for metalloborospherenes MB₄₀⁻ (M=Cu, Ag, and Au).

Mode # 🔺	Freq	Infrared	Raman Activity
1	115.83	0.1512	24.6995
2	165.82	1.0189	39.6286
3	171.16	0.1836	9.9920
4	191.08	1.0584	2.6853
5	191.97	0.0237	38.4866
6	210.52	0.0456	19.9808
7	217.43	0.0119	27.0265
8	230.29	0.0011	27.9995
9	236.77	1.5944	23. 4927
10	242.51	0.1483	2.1024
11	246.85	0.3780	9.5792
12	262.04	0.0043	8.1472
13	270.91	1.4582	0.2520
14	292.55	1.6631	23.1288
15	300.53	4.6843	4. 4389
16	305.99	8.8625	46.9226
17	324.74	5.4717	1.8315
18	325.39	5.0637	10.7723
19	332.90	0.3162	28.8012
20	334.84	11.3221	9.9175
21	347.49	0.4201	15.2012
22	352.75	0.6668	0.2192
23	360.39	0.8231	39.0297
24	367.63	5.7865	15.3074
25	370.94	6.0529	0.4856
26	374.51	10.5582	5.1010
27	382.75	0.2023	6.7621
28	381.82	2.4559	22. 4520
29	394.20	1.2321	r. 2461 6. 1240
30	399.01	0.0419	0.1340
31	404.09	0.0202	1.0044
32	401.19	0.6462	1 0624
34	415.49	0.0403	54 3470
54	420.00	2.0154	54.5415
35	426.98	11.8919	5.9365
36	430.63	0.1730	36.1713
37	434.76	0.4609	83.0984
38	444.03	9.1486	6.7334
39	447.67	1.8844	5.2038
40	456.02	0.7657	48.9624
41	465.85	2.7600	31.7178
42	467.66	1.1672	2.6003
43	470.88	3.0229	0.8791
44	476.18	0.6827	2.3013
45	476.88	1.3629	5.1463
46	480.22	3. 1663	26.4101
47	488.50	0.0660	23.0488
48	491.84	1.2917	4. 7560
49	504.77	1.9367	26.8927
50	505.87	1.3510	11.4217
51	515.98	1.4391	17.4645
52	524.80	2.0496	0.2423

Table S2. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the $Cu\&B_{40}$.

	53	562.87	4. 1705	48.8438
	54	576.47	4.6702	23.1293
	55	578.15	1.9989	2.4559
	56	583.21	0.0444	3.5213
	57	603.04	1.8045	3.0543
	58	609.42	17.1477	8.0684
	59	613.15	3.0324	5.4679
	60	619.95	2.8859	11.3263
	61	626.99	0.0112	4.0138
	62	644.86	0.6981	22.3171
	63	648.39	0.0603	0.1913
	64	649.90	0.4968	28.9570
	65	658.57	4.9490	33.5554
	66	658.96	3.8986	4.7196
	67	679.45	2. 4321	34.0683
	68	683.49	0.1146	11.7472
	69	684.82	1.2813	57.3869
	70	695.27	2.9780	6.6248
	71	698.93	3.9765	62.5126
	72	707.20	0.7956	27.1014
	73	722.77	1.7963	46.4262
	74	748.37	10.9543	19.1270
	75	753.11	0.3507	14.0658
	76	760.01	24.6739	17.5479
	77	761.90	1.4256	5.1579
	78	772.86	16.7889	33.6706
	79	779.81	6. 4007	5.3675
	80	802.15	0.3768	59.9769
	81	805.00	0.0184	35.8318
	82	818.00	1.9029	5.7969
	83	825.21	10.8376	19.1046
	84	840.02	16.0753	7.0993
	85	849.64	0.0033	11.6573
	86	853.80	2.5534	13.3892
	87	861.00	1.1607	4.8640
	88	882.11	0.3202	10.3383
	89	892.62	2. 4008	1.6981
	90	908.46	2.0187	24.2793
	91	963.92	8.9560	14.0171
	92	989.44	9.0937	3.1791
	93	1006.02	2.9714	19.8767
	94	1015.98	0.0796	8. 4262
	95	1031.52	10.6079	47.6044
	96	1043.66	11.7889	22.8586
	97	1064.13	3.7219	26.1718
	98	1093.49	18.9301	75.2000
	99	1110.10	44.6790	22.0300
1	100	1141.17	11.3657	26.5922
1	101	1143.70	23. 4744	89.2198
1	102	1154.93	17.5910	22.8470
1	103	1162.06	11.2456	2.3534
1	104	1180.44	17.3032	8.4698
1	105	1186.73	2,5850	35.9426
1	106	1197.66	5.9251	16.2046
1	107	1212.30	9.8652	36.8489
1	108	1221.14	13.6244	10.5316

117	1322.55	6.3636	75. 4149
116	1307.84	2.2069	47.0460
115	1288.77	63.1945	5.4131
114	1278.22	81.6575	8. 4668
113	1274.88	179.1668	133.0119
112	1259.21	5. 4342	37. 4258
111	1258.17	57.8787	30. 4521
110	1245.96	106.0125	13.3200
109	1236.17	59.2620	54.7092

Mode # 🔺	Freq	Infrared	Raman Activity
1	106.88	2.8633	23.2417
2	144.50	9.1581	162.5346
3	158.44	7.1790	12.1447
4	168.76	1.3529	17.1003
5	184.70	0.4509	44.9824
6	201.06	0.0133	5.1357
7	206.54	0.1141	21.3709
8	220.43	0.2901	37.5763
9	230.52	2.9731	25.0310
10	237.85	3.1704	1.4628
11	243.22	0.0170	10.5476
12	249.95	1.5881	10. 7331
13	261.72	2.7330	10.7953
14	282.78	2.9793	22.1983
15	292.80	6.9862	58.6084
16	299.79	12.4779	11.3385
17	313.32	7.7655	81.7442
18	318.32	22.9496	0.6929
19	323.49	10.7313	147.2726
20	323.52	1.2797	33. 8754
21	329.57	11.6478	35.0739
22	342.49	0.0167	22.3363
23	344.44	1.0457	4.5343
24	348.70	5, 5393	49.5967
25	360.74	15.8300	21.5517
26	367.63	2.7882	5.5932
27	377.12	0.0274	8.7971
28	378.32	6.4892	42.0730
29	384.46	1.7606	10.3154
30	389.22	0.0660	29.3674
31	400.19	3.2458	21.6732
32	406.41	0.4058	6.5719
33	406.95	0.0058	13.9049
34	425.13	12.3839	15.3463
35	427.54	0.2486	23.5221
36	428.64	8.7964	10.0903
37	433.37	0.6899	176.0588
38	440.54	21.8469	2.0877
39	448.92	3.0076	14.4966
40	456.38	0. 5956	70.5120
41	464.65	5.2090	0.0995
42	466.01	1.5420	86.9025
43	470.45	0.1961	4. 3809
44	477.37	0.8500	9.8360
45	477.40	16.0807	28.5708
46	477.55	1.3636	3. 1692
47	486.24	0.8257	25. 3721
48	488.88	3.6061	93. 4083
49	498.47	6. 4222	56.5839
50	504.05	2.4529	2.9449
51	515.82	1.4606	6.3133
52	529.49	4. 1256	2.9325

Table S3. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the Cu&B₄₀⁻.

53	560.75	6.1617	64.8661
54	573.07	2.2164	10.7746
55	577.54	0.0979	2.6753
56	577.80	7.3763	39.3764
57	594.41	3, 4829	2.2171
58	601.37	29,8709	6, 4401
59	610.83	4,2089	1.9786
60	613 99	17 1370	41 4439
61	628 95	1 8493	6 4402
62	632.38	3 9509	95 2378
63	648 51	3 2250	4 4930
64	650.79	0.3365	6 7017
65	654 64	17 5531	38 1700
66	659 18	1 3054	5 2709
67	674 03	4 4560	135 2448
68	679 47	3 6997	119 2749
69	681 71	4 6942	29 9357
70	690 44	3 2974	11 2915
71	605 36	0.0083	44 7760
72	702 62	1 0730	31 3948
72	730 45	24 4355	80 2050
74	744 20	1 6505	12 2383
75	744.23	1.0303 94 E497	12.2303 E6.1110
70	744.54	24. 3421	30.1110
10	140.00	10.0109	29.3312
70	100.90	0.2203	1.2303
70	111.00	9.1191	2.0000
1.9	700.04	0.4566	145.2352
80	196.84	1.1616	56.5153
01	198.11	0.0211	60.3621
82	810.52	0. (045	12.8941
03	818.10	15.6382	30.0509
84	832.60	13. (820	32.1217
05	831.20	0.1439	31.5/10
90	844.13	0.5395	10. (156
87	857.13	1.8749	6.6547
88	872.78	3. 4242	11.8969
89	875.76	0.1518	38.2626
90	900.81	3.9841	24.3708
91	944.46	17.9603	57.5370
92	979.67	3.1468	6.3989
93	990.83	29.7618	53.5422
94	1010.33	0.0474	35. 7303
95	1018.02	14.4288	30.9585
96	1039.25	13.7766	89.4487
97	1058.68	1.6734	19.2697
98	1078.25	18.7777	59.0800
99	1104.79	66.9908	73.3937
100	1126.96	25.9215	105.1861
101	1127.49	15.5946	61.1432
102	1144.80	1.4687	153. 5350
103	1154.93	3.6079	1.0040
104	1172.68	30.4052	5.6542
105	1177.60	10.2786	72.0225
106	1187.68	3.8313	152.7389
107	1204.78	18.9119	155. 1752
108	1210.07	38.8676	19.4404

109	1227.38	44.4147	7.5853
110	1236.14	132.2307	26.3791
111	1248.13	0.1262	40.8837
112	1255.68	72.9524	181.2961
113	1264.64	118.0428	851.6674
114	1270.86	79.3587	21.1177
115	1280.64	75.6365	107.5232
116	1304.57	3.1776	82.5482
117	1318.92	10.7727	71.2787

Mode # 🔺		Freq	Infrared	Raman Activity
	1	88.52	1.5897	0.7142
	2	96.92	0.0449	0.8334
	3	107.88	2,5499	3. 1287
	4	165.75	2.0806	28.4817
	5	175.95	0.1603	76.1536
	6	198.30	2.4834	4. 7782
	7	207.12	0.0634	0.6167
	8	219.60	1.0953	32.3059
	9	221.26	0.1731	16.6653
	10	234.56	0.8391	17.4995
	11	237.24	0.3662	18.0605
	12	252, 42	0.5118	25, 1413
	13	270.68	2.0508	17,0056
	14	271 46	12 7923	18 6244
	15	279 75	3 1952	9 5504
	16	302 42	8 8227	26 2676
	17	320.20	2 8714	16 3101
	18	320.20	0.0746	40 7032
	10	325.01	3 9037	40.1032
	19	240 EE	0.9274	10 0114
	20	342.30	0.0214	0.0114
	21	341.12	0.1120	2.0020
	22	341.03	0.0002	1.4932
	23	354.41	4.0101	30.3161
	24	361.41	4.3(14	3. (318
	25	311.23	4.3543	14. (888
	26	311.55	1.8120	2.1521
	27	391.40	7.8164	2.4935
	28	393.56	6.2518	28.1879
	29	398.22	2.1652	32.4073
	30	399.71	2.6940	2.7415
	31	406.02	0.2124	23.6707
	32	408.53	0.5430	10.3736
	33	416.09	15.4148	21.3380
	34	422.54	5.3479	22.2713
	35	425.89	0.7439	8.9147
	36	433.29	0.1878	40.2088
	37	440.17	0.3404	10.1880
	38	444.32	2.6246	11.6952
	39	445.50	0.4928	66. 4840
	40	451.19	0.9866	3.9932
	41	457.79	0.3279	60.0537
	42	465.63	5. 4201	80. 4987
	43	466.63	1.8724	13.2965
	44	466.84	3, 8699	6.5846
	45	469.54	0.0618	2.2246
	46	477.17	0.3731	23.0297
	47	479.32	0.9552	14.7479
	48	479,68	2,0569	7,4660
	49	500 16	1 8452	1 0234
	50	505.10	2 1067	1 7200
	50	507.08	0 9131	35 3566
	52	507.00	1 0525	7 5022
	52	522.15	1.0525	1. 5852

Table S4. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the $Cu@B_{40}$.

53	560.87	6.4232	36.6271
54	569.46	0.0054	0.2234
55	575.51	0.2322	1, 9392
56	575 86	2 8189	4 8242
57	596 42	0.0199	4 0429
50	600 00	2 0057	17 0200
50		0.0054	11.0000
59	612.35	0.0054	4.5030
60	617.80	7.8118	6.5134
61	619.63	0.1959	7.9434
62	624.01	0.3969	9, 9983
63	638.18	3. 4947	42.9789
64	643.52	2.1319	31.7349
65	653.10	1.2807	4.3139
66	657.79	0.0207	4.8855
67	658.43	2.9500	200.0603
68	674.54	5.4362	56.5874
69	683, 68	1.3203	86, 9187
70	696 04	2 6485	4 4955
71	696 65	0.0806	43 8118
72	705 07	0.4690	20.9732
72	709.07	1 6071	20.0132
13	100.23	1.0311	20. 4039
14	125. 43	0.0625	3.0780
75	730.30	2.3908	1.3941
76	748.36	1.7587	7.6204
77	753.77	3.3605	52.6486
78	757.23	2.1087	0.6033
79	766.67	18.6251	34. 1835
80	793.48	24.7239	8.6643
81	798.41	6.1036	14.7679
82	804.40	0.1172	27.2477
83	813.27	1.9409	19.8382
84	817.07	0.9246	93, 9244
85	821 63	0 4341	24 8167
86	825 00	4 6049	27 4063
~~	020.00		21. 1000
87	854.09	0.1986	5.8220
88	867.10	0.0873	4, 4855
89	886 53	0 1139	0.6290
90	901 30	0.0146	10 5572
01	961 91	8 3114	5 5064
91	901. 51	7 1450	0.4067
92	902.12	1.1409	2. 4901
93	1009.10	1.1194	21.6614
94	1021.22	0.1441	6.6729
95	1021.90	3.5278	69.5279
96	1047.72	0.1320	0.0693
97	1064.36	3.6035	113.0394
98	1101.76	19.1486	118, 1120
99	1105.04	3, 9251	39.7693
100	1135.49	0.8261	71.6760
101	1154.68	36.5829	5.3232
102	1160.04	10.7762	5.6905
103	1168.30	0.1218	65.7432
104	1176.50	2.8830	37, 6497
105	1188.94	17, 1913	119 7527
106	1197 81	2 9271	7 1550
107	1201 40	24 1107	13 2323
108	1210 24	13 7/96	130 4741
100	1210.24	15.1400	150.4141

109	1237.80	72.8074	283.8518
110	1239.15	12.8695	2.5743
111	1240.53	21.9966	58.2304
112	1243.73	11.1108	33.2080
113	1248.62	43. 4920	18.3362
114	1264.94	87.3148	26.0929
115	1271.99	82.3639	12.7965
116	1299.35	19.7949	106.0157
117	1314.30	14. 5360	149. 4519

Mode # 🔺	Freq	Infrared	Raman Activity 1
1	92.43	0.2143	2.5255
2	104.38	1.2274	2.3120
3	121.96	2.9714	13.1572
4	170.84	0.8772	72.3803
5	180.52	1.5809	55.7836
6	206.17	5.4174	9.1721
7	208.19	0.0007	6.5882
8	213.60	0.3252	2.1228
9	217.71	2.4201	19.2253
10	223.06	0.1107	16.6499
11	237.44	1.2134	19.7899
12	237.60	0.0297	12.9367
13	257.60	23.5810	4.9768
14	261.46	1.6479	68.7034
15	273.42	5.9880	27.1491
16	287.25	3. 4335	5.9580
17	317.33	3.4190	1.1698
18	319.49	6.4950	0.6897
19	321.38	3.8610	44.8815
20	331.44	1.9596	7.2742
21	332.07	0.2151	7.8969
22	338.92	4.4410	3. 4712
23	344.04	4.0759	12.5411
24	363.73	0.0222	8.0628
25	371.80	0.0296	0.6731
26	377.99	0.4782	32.0347
27	391.36	11.7617	29.2031
28	393.69	6.3193	12.0313
29	397.31	3.7805	10.7330
30	401.14	19.3243	6.0063
31	406.53	0.0099	2.9471
32	410.70	11.4985	17.0062
33	413.24	0.9322	30.5291
34	416.73	12.6510	13.3179
35	422.31	2.6920	34. 3510
36	435.16	0.1055	1.6156
37	439.63	0.0828	82.3635
38	440.40	0.0192	13.0375
39	444.46	5.3509	59.2196
40	453.49	5.7225	27.8893
41	455.49	0.0955	47.2425
42	455.74	10.5826	20. 1827
43	461.38	6.9479	81.1026
44	474.91	3, 1999	18.1588
45	475.03	4. 9187	5.5503
46	476.48	4. 4966	16.6505
47	479.22	0.7764	8.3996
48	481.70	1.9705	5.7225
49	504.07	2.0683	2.8179
50	504.85	2.2664	0.7319
51	508.40	1.6989	2.4372
52	524.36	3.4142	11.8185

Table S5. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the Cu@B₄₀⁻.

53	563.97	0.1341	0.7006
54	567.94	10.2571	17.7387
55	573.09	0.2565	1.6453
56	581.35	4.7791	3. 4133
57	588.71	0.0494	1.0567
58	603.98	0.1482	39.6950
59	606.58	0.2992	3. 4321
60	614.65	1.1343	0.1447
61	620, 73	33, 9249	30, 2650
62	627, 93	1.2618	23, 1121
63	627 94	1 1954	25 1420
64	643 75	1.3500	101 2893
65	652 51	16 4657	26 2905
66	653.59	16.3096	114 4552
67	657.94	8 2296	15 7472
68	663 17	0.3627	14 7659
69	681 66	1 2870	19,2330
70	688 40	0.0454	63 8777
71	697 45	0.8458	6 3783
72	708 04	26 7384	9 9416
73	712 50	20.1004	30 7667
74	720 65	2.4500	27 9972
75	722.81	2 4470	21.0012
76	720.88	2.4413	12 1662
77	740 72	0.1410	E 4625
70	140.13 750 50	0.3112	0.4000
70	765 01	0.0000	44. 3001
1.9	103.21	10.0100	40.3090
00	103.09	0.9909 00.0007	29.0341
00	181.93	33. 3301	3.9590
82	196.46	0.0149	0.0100
03	802.58	1.9/10	93.3696
84	803.83	2.9862	14. 9362
85	811.81	0.0426	49, 1990
90	814.69	4.8942	62,6692
87	848.35	0.0016	7.5516
88	856.71	0.6071	0.4010
89	870.44	0.6004	3.2306
90	887.37	0.0195	14.3241
91	950.28	12.1848	10.1531
92	970.22	7.3378	1.0410
93	1002.75	0.4675	32.3008
94	1012.65	1.0800	127.4812
95	1017.81	0.8537	3. 4431
96	1046.89	1.8001	0.0491
97	1056.36	7.3346	59.7012
98	1092.58	33.8054	60.9631
99	1100.51	5.0784	49.8961
100	1124.24	9.5620	141.3763
101	1145.43	39.3831	7.5543
102	1153.77	4.0167	25. 2335
103	1157.94	3.0311	53, 2251
104	1167.80	8.1154	99. 4099
105	1180.52	34.5066	108.7864
106	1190.90	0.6193	7.2447
107	1191.72	8.9059	89.1384
108	1194.32	51.6773	15.6348

109	1214.31	37.3282	82.2693
110	1225.30	5.0030	129.2525
111	1229.08	3.2495	13.0426
112	1231.76	1.7056	3.9855
113	1240.33	54.8637	31.9596
114	1258.07	83.9149	17.4940
115	1266.43	88.5501	56.1362
116	1291.14	40.1258	82.1875
117	1304.76	31.0172	45.2234

Mode # 🔺	Freq	Infrared	Raman Activity
1	- 25.49	0.5761	6.0462
2	25.82	0.4338	7.2445
3	106.46	0.2963	27:0363
4	174.54	0.1064	38, 4699
5	187.12	0.8127	54.0757
6	199.22	0.0690	3, 1325
7	213.90	0.5713	13. 4581
8	216.49	0.1002	16, 1250
9	221.18	0.1218	24, 4093
10	239.05	0.1081	21.7356
11	244.10	0.0133	0.3048
12	247.39	1.9045	30.9157
13	274.04	0.0043	9.9137
14	275.88	1.3889	8.4379
15	303.47	0.0072	0.0349
16	322.52	1.0110	3.3667
17	325.90	3.1337	19.4133
18	342.53	1.6101	53.3604
19	342.97	0.2087	0.6385
20	350.45	0.0924	58.6206
21	356.62	0.7421	0.1266
22	357.64	0.8522	19.4352
23	363.07	2.0726	13.8655
24	371.44	4.7001	9.6445
25	382.48	31.4198	16.5042
26	385.20	8.9742	2.0598
27	389.79	10.5653	1.9378
28	393.90	6.2337	42.9203
29	395.08	6.7601	1.1971
30	400.44	3, 5038	33.0828
31	409.54	0.3771	6.0272
32	410.97	0.0793	7.6648
33	415.73	0.9587	60.3019
34	423.36	0.5143	6.7349
05	400.04	0 4405	41.0700
30	420.04	2.4423	41.0123
30	431.32	0.000	91.0020
20	433.10	4.1143	4 6610
30	451.50	0.1912	4.0010
40	451.51	0.2333	4. 5555
41	460.24	0.0021	1 4819
42	472 03	0.0021	1 3148
43	474 59	4 6855	1 0185
44	476 63	0 4241	16 1456
45	477, 49	0, 7250	8, 4153
46	484.51	0.3969	3, 1436
47	491.25	0.1009	21, 4941
48	500.26	1.3404	6.6123
49	502.59	3.6410	0.8522
50	503.67	0.9787	57.6485
51	510.03	0.4182	6.3246
52	536.94	21.8288	161.2094

Table S6. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the $Ag\&B_{40}$.

53	565.74	4.6978	7.2888
54	576.38	0.1212	0.5734
55	583, 91	4.3700	6,4442
56	585.82	1.2569	6, 1665
57	608,66	0.2694	0.1760
58	618.90	13.0076	9, 5950
59	619.06	0.0652	1 6671
60	625.98	0 0007	5 2097
61	626, 81	1 8636	134 0938
62	629 58	0 1667	1 6494
63	643 45	5 2073	86 0810
6.4	650 72	0.0967	0.0070
65	660 40	0.0001	64 0727
66	662 22	0.2113	04.2131
00	003.33	0.0120	9.1040
01	000.42	19.0411	104.0392
00	690.30	0.0814	10.4160
69	691.14	1.4288	159.1700
70	704.04	6.9301	122.4695
71	707.79	0.9236	0.5482
72	708.13	1.9413	31.7960
73	720. 47	26.1507	475.2668
74	754.22	5.5159	35.0612
75	759.49	3.0831	0.3113
76	764.60	2.4234	37.2374
77	765.44	1.6955	13.2768
78	779.67	0.0119	12.7615
79	790.28	21.7028	48.0719
80	804.58	2.8429	16.4014
81	804.72	2.4187	6.1709
82	818.97	20.7353	26.6475
83	838.27	0.5660	2.8775
84	840.34	7.6326	61.9296
85	850.17	2.8434	3. 7766
86	852.97	1.2478	26.3593
87	857 93	0 0423	7 1416
88	876 91	0 1426	15 7396
89	907 25	0.1116	3 6828
an	916 67	0.0010	7 2557
01	982 53	6 1869	0 7950
02	002.00	0 6635	0.1550
92	1021 03	9.0000	14 0836
50	1027.00	7 1494	14.0000
94	1031.04	0 6120	20.2112
90	1050.55	9.0132	30.0041
96	1051.62	1.21(1	1.0130
91	1100.85	21.2154	10.2590
98	1130.64	24.9267	127.4159
99	1140.29	20. 4333	10.8389
100	1147.83	7.2292	30, 4686
101	1162.32	0.1496	2.1793
102	1186.08	2.7658	77.5957
103	1192.91	7.6500	87.8419
104	1199.80	10.7897	34.2806
105	1205.32	9.7499	6. 4128
106	1223.60	7.3895	57.9643
107	1235. 38	4.0840	54.4405
108	1244.10	15.6083	53.1063

	117	1319.64	15.3725	157.0902
	116	1308.51	26.0078	76.9440
	115	1289.81	101.5530	12.9205
	114	1289.27	35. 4262	36.2274
	113	1275.54	5.4380	9, 9259
	112	1270. 38	191.5377	37.5988
	111	1256.90	76.1452	36.2504
	110	1256.77	79.3883	7.9356
	109	1250.28	1.5877	51.5111
11 - Contract - Contra				

Mode # 🔺	Freq	Infrared	Raman Activity
1	35.84	0.5487	9.1844
2	40.88	0.8931	10.3240
3	111.36	0.0403	24.2316
4	170.96	1.6686	82.2249
5	183.58	1.0597	65.6118
6	202.79	0.0715	5.6053
7	213.17	2.3703	20.0822
8	217.21	0.1844	14. 4371
9	222.91	0.1500	31.5640
10	231.86	0.1686	22.3086
11	237.79	1.9874	29.6757
12	244.27	0.0197	3.4612
13	267.43	0.0474	13.8474
14	270.98	2.7348	11.9444
15	293.80	0.5979	0.5477
16	311.01	0.4966	11.5914
17	325.12	9.6146	85. 4031
18	339.26	0.1397	0.6064
19	343.30	6.2926	23.2000
20	345.89	1.2036	6.5226
21	346.15	0.5466	127.9704
22	354.77	0.0193	2.7316
23	360.95	2.7174	6.9817
24	366.65	6.6904	10. 4766
25	379.27	37.7560	117.9502
26	382.46	4.7962	0.7152
27	390.38	3, 5211	5.9180
28	393.37	26.4813	0.6759
29	395.02	2.6255	125.5025
30	399.28	1.2323	8.0371
31	404.56	0.6264	8.4817
32	411.55	1.5539	11.7534
33	413.62	0.4697	63.1448
34	417.21	2.8184	16.9797
	105 20		10.000
35	425.63	0.3552	10.8537
36	429.66	0.5403	18.2839
31	441.07	3. 4033	60.9688
J8 20	442.09	3. 9306	36.3311
39	452.31	1.0032	9.1230
40	400.42	0.0011	01.4030
41	403.03	0.0399	0.1200
75.	413.23	0 1441	2.2143
CP NN	413.33	0.1441	23.3231
44	410.13 179 94	0.5700	J. 1301 13. 9366
CP 42	410.04 ADE 70	0.0100	13.2300
40	400.10 180 EE	U. 1041 7 9165	201 JU
19	409.00 400 RO	1 8286	31 0675
40	503 50	5 6504	71 6403
50	508 75	1 6947	6 3260
51	508.10	2 1785	Q 7699
52	537 68	19 6131	93 5881
52	001.00	10.0101	20.0001

Table S7. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the $Ag\&B_{40}$.

53	568.34	9.5311	15.0190
54	571.38	0.0234	1.3155
55	585.65	10.2827	14.2651
56	589.04	1.2974	4.9613
57	599.66	0.0155	3.8757
58	607.24	24. 4291	222. 4198
59	609.21	0.2570	4.7042
60	627.34	4.9243	181.3523
61	631.23	0.6501	7.6905
62	632.32	0.2807	3, 5913
63	640.61	8.9784	278, 5630
64	658.32	1.1716	219, 2229
65	658,65	0.8295	2.5810
66	668, 56	3, 7204	154, 1197
67	671.77	10.1792	1128, 3498
68	687.25	0.2210	21, 3430
69	689.35	0.1534	336, 3476
70	698, 42	1.1021	55, 4548
71	700.44	1.7118	227, 7578
72	709.25	0, 1691	2,8908
73	729.10	3.8749	382.0158
74	746.77	0.4259	12,6817
75	753.66	14 7953	23,0098
76	756.65	6.3373	233 4673
77	763.57	2 7628	8 9079
78	770, 55	0.3396	13, 3293
79	787.03	37.8487	43, 8638
80	795, 97	0.5184	16, 1678
81	806.23	19.2039	54.0294
82	817.85	15.1458	17.4702
83	831.20	0.4197	6.6546
84	835.33	6.8094	97.5698
85	840.71	1.4746	6.6558
86	842.28	6.2135	14.6195
87	854 85	0 2120	20 7139
88	871 16	1 7007	30 3280
89	894 39	0.3250	9 6783
90	905 62	0.1067	5 3304
91	976 28	9 6489	77 4840
92	983.28	12 7063	0.5872
93	1016 16	0 1442	0.5271
94	1030 86	3 8888	0.8442
95	1034 53	9 1919	38 9794
96	1043 93	3 0652	1 0843
97	1095.97	21 5883	73 4265
98	1122 19	19 5373	53 2109
99	1124 71	58 2564	267 5584
100	1143 29	4 3159	201.0004
101	1155 57	0.5666	26, 4369
102	1178 00	10 8342	196 4400
103	1182 58	31 0003	119 9316
104	1187 69	13, 3977	86 6082
105	1203 89	16 8842	26 4963
106	1210 42	7, 1487	72 3729
107	1229.66	20, 2762	104, 2854
108	1235.72	1.8384	136.1446

117	1314.10	44.5808	120.8735
116	1303.46	44.7074	104.2990
115	1284.50	205.5345	88. 5566
114	1282.11	42.6934	27.5311
113	1269.84	6.7662	54.7259
112	1262.38	260.7747	175.5685
111	1256.93	90.5385	67.4823
110	1250.33	62.0952	9.6759
109	1239.37	16.6669	2.8958

Mode # 🔺	Freq		Infrared	Raman Activity
	1	46.70	0.0038	0.4735
	2	46.70	0.0038	0.4735
	3	87.94	0.5418	0.1419
	4	142.36	0.4541	62.2466
	5	152.90	0.0000	111.8722
	6	196.01	0.1418	3.7491
	7	196.01	0.1418	3.7491
	8	208.33	3.0531	7.4401
	9	208.33	3.0531	7.4402
	10	215.02	0.0000	0.0000
	11	223.79	0.0000	3.3175
	12	226.45	0.0000	31.3325
	13	243.25	17.7366	117.5678
	14	264.32	0.0000	98.3227
	15	281.89	0.0000	0.0000
	16	283.32	0.0066	6,9646
	17	309.95	17 5974	29 9397
	18	309.95	17 5974	29 9397
	19	330 41	0.0000	1 8986
	20	350.97	0.0000	43 4663
	20	350.97	2 1030	2 1052
	22	350.97	2.1939	2.1552
	22	250.91	2.1939	2.1932
	23	355.06	0.0000	0.0000
	24	355.34	0.2655	10.5903
	25	355.34	0.2655	10.5904
	26	361.96	0.0000	132.5600
	27	381.75	14.3367	26.9138
	28	381.75	14.3366	26.9137
	29	392.13	1.2159	16.6941
	30	392.13	1.2159	16.6941
	31	406.88	0.4131	8.3904
	32	406.88	0.4131	8.3904
	33	410.62	0.0000	0.0000
	34	412.11	29. 7597	31.9178
	35	412.11	29. 7597	31.9179
	36	420.02	3.0571	26.3694
	37	427.21	0.0000	133.2823
	38	430.51	0.0000	52.6967
	39	441.36	0.0000	0.0000
	40	441.98	0.0000	98.6214
	41	455.49	3.5711	0.0873
	42	455.49	3.5711	0.0873
	43	456, 28	0.0000	162,6449
	44	463, 29	0.0000	0.0000
	45	466.17	5.6307	6, 4373
	46	470 94	3 8407	35 1796
	47	470 94	3 8407	35 1795
	48	475 77	0.0401	42 3868
	49	501 42	2 3891	0.8515
	50	501.42	2.0001	0.0313
	50	501.42	2.3001	0.0010
	51	504.38	2.0001	0.0020
	52	505.61	0.000	21.7254

Table S8. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the $Ag@B_{40}$.

53	563.15	7.6560	69.2125
54	568.72	0.0000	4.2527
55	570.93	0.5377	0.0601
56	570.93	0.5377	0.0601
57	590.40	0.0000	0.0000
58	608.92	0.0000	40. 9829
59	614.51	1.7334	8.4584
60	614.51	1.7334	8.4585
61	615.08	5.6398	3.7020
62	617.21	0.0000	0.0000
63	645.20	0.0000	92. 4775
64	646.33	0.0000	158.0052
65	653.86	3.3396	0.1339
66	653.86	3.3396	0.1339
67	666.05	21.0851	102.6091
68	666.05	21.0851	102.6089
69	684.97	0.0000	23.0815
70	691.70	0.0597	109.8158
71	699.99	7.4799	17.4194
72	699, 99	7,4799	17.4194
73	705.03	1.0710	187.5778
74	727.57	0.0000	0.0000
75	737.92	0.0002	3, 4241
76	737.92	0.0002	3, 4241
77	759.43	0.0000	425, 8012
78	762.48	0.0000	53, 8969
79	765.53	11.7315	42.0100
80	795.00	42,5031	3,6630
81	799.73	3.0035	10.0502
82	799 73	3 0035	10.0502
83	815 03	3 7631	22 8653
84	815 03	3 7631	22,8653
85	833 09	5.0642	49 7525
86	833 09	5.0642	49 7526
87	847.07	0.0000	2.1766
88	862.19	0.0000	5.2335
89	884.81	0.0000	0.0000
90	905.31	0.0000	1.5849
91	978.60	5.9270	4.5043
92	978.60	5.9270	4.5043
93	1011.00	0.0000	96.3508
94	1018.47	3. 4789	27.1587
95	1018.47	3. 4789	27.1587
96	1049.82	0.0000	0.0000
97	1081.31	2.5917	60.5613
98	1095.21	51.3969	73.3960
99	1095.21	51.3969	73.3958
100	1126.94	0.0000	35.0896
101	1163.85	0.0000	4.3946
102	1168.39	0.0000	9.2729
103	1175.57	46.7724	2.6757
104	1175.57	46.7724	2.6757
105	1176.84	1.6171	1.3276
106	1207.49	15.0228	16.5575
107	1207.49	15.0228	16.5575
108	1228.36	0.0000	0.0000

109	1228.90	0.0000	761.7176
110	1232.76	0.9994	8.6270
111	1232.76	0.9994	8.6270
112	1233.09	0.0000	0.0000
113	1245.01	81.9716	67.0924
114	1277.62	0.0000	652.3777
115	1278.05	159.3235	36.2202
116	1278.05	159.3235	36.2202
117	1306.72	0.0000	92.7047

Mode # 🔺	Freq	Infrared	Raman Activity
1	52.07	0.2853	0.0946
2	52.07	0.2853	0.0946
3	96.14	5.4023	47.2005
4	103.39	1.0492	1.6396
5	157.77	0.0000	79.1706
6	197.81	0.1503	11.7279
7	197.81	0.1503	11.7279
8	200.22	0.0000	0.0000
9	203.61	26.4499	46.5886
10	207.90	2.6572	7.7134
11	207.90	2.6572	7.7134
12	211.62	0.0000	23.5966
13	219.33	0.0000	3.9906
14	252.76	0.0000	103.0987
15	258.56	0.0000	0.0000
16	275.06	0.1898	0.3632
17	308.29	0.0000	2.2108
18	310.16	11.5278	0.5004
19	310, 16	11.5278	0.5004
20	333.65	0.1213	4,5189
21	333.65	0.1213	4, 5189
22	343.04	0.0000	14.9109
23	352.49	0.0000	0.0000
24	352.85	0.0000	24.7064
25	355.23	7.2838	26.1778
26	355.23	7.2838	26.1778
27	377.76	0.7479	18.5702
28	377.76	0.7479	18.5703
29	397.63	2.5338	0.1329
30	397.63	2,5338	0.1329
31	404.80	37.3623	0.6035
32	404.80	37.3623	0.6035
33	405.38	0.0000	0.0000
34	409.16	0.0000	65.5872
	100.05		12.0100
35	409.35	7.5229	46.0189
36	409.35	7.5229	46.0189
37	419.21	0.0000	0.0000
38	424.09	0.1472	11.8879
39	439.05	0.0000	85.0490
40	444.35	0.0000	25.5724
41	444.41	10.0856	0.1137
42	444.41	10.0856	0.1137
43	451.04	0.0000	173.6595
44	462.72	7.9378	0.0028
45	471.92	8.2472	22.0646
46	471.92	8.2472	22.0647
47	475.09	0.0000	14.9010
48	476.34	0.0000	0.0000
49	503.66	3.2105	0.3453
50	505.29	3.8064	0.4423
51	505.29	3.8064	0.4423
52	507.82	0.0000	3.5779

Table S9. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the $Ag@B_{40}$.

53	563.28	0.0000	1.1092
54	569.89	14.3254	27.2888
55	573.81	1.0006	0.1672
56	573.81	1.0006	0.1672
57	583.27	0.0000	0.0000
58	602.54	1.3355	1.1724
59	602.54	1.3355	1.1725
60	613.09	0.0000	0.0000
61	617.49	0.0000	25.9585
62	622, 30	15, 1001	2, 1510
63	638, 74	0.0000	159, 2667
64	645.07	0,0000	114, 1109
65	648 94	27 2224	28 2211
66	648,94	27.2224	28.2214
67	664 21	0.0348	35 2196
68	664 21	0.0348	35 2194
69	686 25	0.3625	78 1426
70	686.27	0.0000	31 3609
71	704 57	45 9708	13 7177
72	704.85	0 0000	0.0000
73	722 07	15 0503	35 5155
74	722.07	15.0503	35.5155
75	724 24	0 4361	5.0060
70	724.24	0.4301	5.0909
10	749.40	0.4301	3.0909
70	142.40	0.0000	10.4324
10	155.08	3. (856	24.4421
1.9	114.50	0.0000	212.9111
80	193.95	2. (044	0.2214
81	793.95	2.7044	0.2213
82	794.16	48.4162	6.9740
83	808.63	2.0964	17.4609
84	808.63	2.0964	17.4609
85	817.65	1.5838	60.6149
86	817.65	1.5838	60. 6147
87	845.56	0.0000	4.1509
88	851.20	0.0000	0.5662
89	870.72	0.0000	0.0000
90	893.60	0.0000	11.3982
91	967.78	7.1119	0.6955
92	967.78	7.1119	0.6955
93	1002.93	0.0000	46.8688
94	1015.02	6.1238	6.9655
95	1015.02	6.1238	6.9655
96	1050.49	0.0000	0.0000
97	1080.77	0.1406	24.7499
98	1090.80	44.7172	55.8050
99	1090.80	44.7172	55.8052
100	1122.13	0.0000	34.8996
101	1155.55	0.0000	41.1132
102	1158.98	0.0000	30.1421
103	1168.61	49.4592	0.2018
104	1168.61	49.4592	0.2018
105	1172.05	0.4279	0.0161
106	1200.85	32.6128	13.6276
107	1200.85	32.6128	13.6276
108	1214.64	0.0000	197.7755

C				
	117	1298.65	0.0000	80. 9276
	116	1273.97	0.0000	101.8820
	115	1270.70	151.9197	38. 2953
	114	1270.70	151.9197	38. 2953
	113	1239.01	64.4304	60.1108
	112	1225.97	1.2543	22. 8839
	111	1225.97	1.2543	22.8839
	110	1225.02	0.0000	0.0000
	109	1217.05	0.0000	0.0000
1				

Mode # 🔺	Freq	Infrared	Raman Activity
1	33.96	0.1088	1.6288
2	35.04	0.1472	1.3700
3	99.05	0.0191	13.7793
4	175.00	0.0636	37.3408
5	187.89	0. 4781	38.6674
6	199.18	0.0564	1.0849
7	214.38	0.3242	9.9203
8	214.66	0.0355	18.8850
9	221.52	0.6355	15.5322
10	238.38	0.0531	22.3854
11	244.53	0.0494	0.4211
12	255.46	2.7029	10.9972
13	272.99	0.0026	9.2564
14	279.34	1.1218	3.8451
15	305.01	0.0077	0.1061
16	322.14	1.4150	2.5631
17	324.61	4.5038	4.3416
18	342.20	0.1480	0.2435
19	343.38	1.0100	11.1332
20	350.25	0.0180	23. 4417
21	357.41	0.8605	0.1508
22	359.79	0.7236	10.0747
23	365.35	2.2568	2.9306
24	372.99	8.5179	8.1051
25	384.36	23, 3629	9.2172
26	386.55	0.2270	0. 4270
27	393.30	0.0323	0. 4386
28	394.14	5. 7727	8.8792
29	397.48	19.2872	9.0292
30	401.44	5, 5323	4.8326
31	406.95	0.8310	3.0215
32	411.13	0.0607	4. 7512
33	417.34	0.5530	29.7600
34	419.04	0.8691	1.4534
35	425.76	3.5088	14. 1750
36	429.50	0.2362	74. 7737
37	435.81	2.1002	4. 4855
38	438.38	0.2861	15.2999
39	454.16	0.0907	0.2357
40	456.92	0.0630	54.7839
41	464.99	0.0442	0.5276
42	471.45	0.9895	0.9900
43	473.92	2.8030	0.5969
44	476.26	0.6563	2.5520
45	478.99	0.7295	8. 4942
46	485.29	0.5613	3, 5606
47	495.00	0.5703	8.7705
48	498.35	1.4932	2.1746
49	505.23	3.4869	2.4636
50	505.70	0.0503	10.2074
51	509.41	0.3283	17.4575
52	559.43	12.9570	7.4360

Table S10. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the $Au\&B_{40}$.

53	565.33	8.3709	4.2680
54	573.24	0.1147	0.4909
55	583.37	4.0354	7.7060
56	586.13	1.1087	4.0693
57	605.21	10.6389	10.7620
58	605.22	1.2725	1.3869
59	617.64	0.0549	1.4501
60	626.20	0.0358	4.0924
61	628.66	0.1613	1.3584
62	631.85	2.1601	27.1126
63	639.31	0.5681	33, 2972
64	657.43	0.0079	0.4031
65	658.34	0.5021	104,6621
66	663.14	0.4576	1.9810
67	688.27	0.3015	2, 7582
68	688 95	0.5457	11 9375
69	697 74	3 1836	37 1912
70	705.36	8 8688	33,9672
71	707 31	3 9229	32 1866
72	707 59	0.9922	0 3674
73	731 01	38 7302	175 8170
74	752 58	1 8083	25 0857
75	753 31	2 9457	0.0757
76	762 05	2. 5451	0.0131
77	767 10	2.0231	5. J42J 60. 0E14
70	772 00	0.5022	00.0314
10	110.00	0.0022	3. 3104
19	109.00	31.0000	11.0404
80	800. 19	2.3812	6. 2224
81	801.93	1.8440	4. (682
82	818. (1	22.0704	13.2826
83	837.20	0.1306	5.4519
84	841.66	3. 7137	28.6821
85	848.61	4.0650	1.5536
86	852.61	1.9560	5.5373
87	857.26	0.0681	7.4889
88	875.67	0.1299	14.0260
89	905.41	0.1110	3. 7257
90	916.51	0.0001	6,2076
91	979.03	3.2475	1.2256
92	991.41	10.4144	0.2173
93	1020.24	0.3257	6, 4209
94	1036.44	7.6829	0.1077
95	1040 82	6.4067	34 6278
96	1046 73	0.8995	1 1517
97	1099.57	16 2454	1 7662
98	1123.98	4 4057	27 1435
99	1131 68	19 2000	2 3102
100	1147 53	3 7250	2. 3102
101	1157 77	0.9018	1 0483
102	1185 03	2 5723	103 0027
102	1180 54	2.0120	26,0024
104	1109.04	5.5200 6.7067	20.0034 2 E017
104	1005 46	0.1301	0.0011
100	1203. 40	4 0204	0.4030
107	1210.90	4. 9324 OF 4054	28, 4218
100	1230. 32	25.4054	44.3590
108	1243.16	20.0511	7.4209

1	109	1252.24	0.3805	37.4971
	110	1257.84	70.3966	53.9763
	111	1258.19	83.1406	3.5865
	112	1271.43	155.3538	104.6838
	113	1274.98	3.2343	7.3331
	114	1290.48	46.3094	50.2907
	115	1290.89	27.4580	24.7532
	116	1308.27	22.5966	47.7318
	117	1319.66	5.4984	188.2054

Mode # 🔺	Freq	Infrared	Raman Activity
1	43.81	0.4557	2.1046
2	46.40	0.5745	2.5556
3	102.64	0.0226	10.4149
4	172.96	0.2663	57.4945
5	183.56	0.9872	43.1120
6	200.80	0.1635	2.0612
7	212.74	2.6319	12.9902
8	217.40	0.1015	18.2586
9	224.29	0.1051	29.3542
10	235.36	0.1180	23.0094
11	243.25	3.3736	13.2508
12	245.38	0.1459	2.8629
13	270.37	0.0039	10.8481
14	272.96	1.8604	5.8055
15	298.46	0.2415	1.0329
16	315.87	1.6527	4. 4249
17	327.15	5.4011	41.8352
18	342.05	0.0501	0.3917
19	345.62	4, 9523	20, 1919
20	347.48	1.3901	7.5290
21	349.59	0.3378	57.0814
22	357.85	0.0798	3.4644
23	361.27	3, 8358	2.9953
24	368, 96	7.2581	11.2096
25	381.14	35, 5250	43.0582
26	382.71	2,5055	1.3918
27	392.52	1.7433	2.3835
28	395.31	27, 7063	1.6113
29	396.32	3,8646	21.9609
30	400.65	0.0608	29.2768
31	404.61	2.4677	14.6676
32	411.54	1.8164	6.1511
33	416.91	0.2726	39.6648
34	418.61	3.0459	6.4585
	102.01	0.1007	10,000
35	426.31	0.1037	16.6898
36	429.94	0.6334	60.2489
37	441.02	4.4051	39.0544
38	443.16	0.3170	1.8914
39	454.83	0.2108	52.8426
40	456.29	0.5490	5.9635
41	465.53	0.0361	0.2718
42	471.85	2.5751	1.5696
43	474.63	0.9061	5.5315
44	477.60	4.4494	1.1767
45	480.76	0.8726	10.9494
46	487.24	0.1071	1.3474
47	494.29	6.1338	11.5670
48	500.18	2.8046	10.3008
49	505.88	1.0722	8.3704
50	506.05	2.1560	21.4384
51	506.47	2.2308	17.0221
52	548.83	16.1119	7.2996

Table S11. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the Au&B₄₀⁻.

53	568.04	0.5181	1.7339
54	570.06	13.1113	16.0920
55	587.19	8.5085	5.9230
56	589.28	2.3951	5.4196
57	599.88	0.3456	1.3772
58	601.79	27.2985	25.0237
59	610,68	0.5023	3.3710
60	630 70	0.8940	10 0679
61	631 16	1 5437	16.4297
62	634 04	0.0849	2 9822
63	639 34	5 8394	41 5188
64	655 50	1 1181	113 9974
65	655 07	0.7717	28 5556
66	665 80	1 8344	2 6204
67	605.05	4 2226	12.0254
60	696 05	4.3330	0 6050
00	604 79	2.1112	5.0500
70	034.12	5.4021	00 200E
71	091.49	0.1109	22. 3993
71	100.30	0.1132	3.0963
12	(18.UZ	50.0992	301.2864
13	736.91	48.8200	427.4050
74	739.73	2.5643	19.3620
75	755.13	13.5874	19.4023
76	758.84	4.7151	49.1793
77	767.35	3.5397	20. 4856
78	776.03	2.8183	2.9714
79	789.28	29.9506	46.1283
80	796.60	0.6740	7.4226
81	807.55	21.1409	35.2517
82	819.66	26.3049	7.0245
83	832.80	0.4653	4.6595
84	839.13	8.4676	84.2820
85	843.72	2.3215	3, 5731
86	845.63	4.7152	9.3581
87	855.10	0.1996	19.8738
88	872.39	2.0341	28.9535
89	894.97	0.1377	9.7608
90	907.17	0.0097	4. 4941
91	975.37	11.4667	38. 9978
92	984.34	11.4058	0.7089
93	1017.33	0.6248	0.2055
94	1031.09	6.5859	0.1395
95	1035.25	12.8367	22.6597
96	1036.72	3.9776	2.3181
97	1095.37	22. 4393	14.8507
98	1116.31	27.3770	15.7662
99	1126.10	74.3025	36.3669
100	1143.52	5.2738	21.5522
101	1156.56	0.9085	3.9910
102	1179.99	0.8912	136, 1901
103	1185.01	18,6481	31.6976
104	1189.16	29, 5421	40, 4914
105	1204.42	16.6971	5.7240
106	1211.00	5.7617	36 6827
107	1228.63	7.8998	79 1701
108	1240.03	0 7429	48 6030
		0 E D	10.0000

117	1316.04	21.9351	145.3281
116	1304.77	37.2177	75.0559
115	1287.14	171.1163	61.8538
114	1285.22	32. 7243	21.8988
113	1275.27	2.8733	44. 7575
112	1268.14	272. 4232	26.4921
111	1259.57	52.5037	30.0826
110	1252.88	71.3542	3. 7579
109	1241.68	30.1510	40.5008

Mode # 🔺	Freq	Infrared	Raman Activity
1	- 24, 92	0.0047	0.0455
2	24.92	0.0047	0.0455
3	41.57	0.2423	0.0080
4	155.67	2.6118	40, 8301
5	157.48	0.0000	32, 8989
6	162.15	1.1506	0.8292
7	162.15	1.1506	0.8292
8	194, 59	0.2165	2.6371
9	194,59	0.2165	2,6371
10	197.61	0.0000	0.0000
11	204.23	0.0000	2.6319
12	222.81	0.0000	2.8103
13	224, 29	13, 9792	0.1130
14	251.41	0.0000	5, 3989
15	275.52	0.0000	0.0000
16	276.18	1.0342	1.3995
17	286.09	2,1869	7.9167
18	286.09	2,1869	7.9167
19	310.21	0.0000	5.0316
20	321.55	0.0000	26.3378
21	331.78	0.1892	0.1675
22	331.78	0, 1892	0.1675
23	338.42	39.8924	14.0560
24	338.42	39.8924	14.0560
25	341.07	0.0000	0.0000
26	341.40	0.0000	16.0891
27	349.05	7.4518	0.0815
28	349.05	7.4518	0.0815
29	371.11	0.0000	0.0000
30	371.50	0.1458	14.5612
31	371.50	0.1458	14.5612
32	386.86	2.4336	4.1242
33	386.86	2.4336	4.1242
34	407.94	0.0000	5.2775
35	408.05	7.5887	26, 5158
36	415.44	0.0103	1.3906
37	415.44	0.0103	1.3906
38	427.90	0.0000	51.8623
39	431.91	0.0000	0.3103
40	446.15	0.0000	86.6676
41	454.30	0.0000	0.0000
42	455.12	2.2643	0.1968
43	461.52	0.0000	18.2280
44	470.15	1.5831	0.3454
45	470.15	1.5831	0.3454
46	472.09	0.0000	0.0000
47	478.14	0. 7558	7.6863
48	478.14	0. 7558	7.6864
49	494.78	0.7404	1.7883
50	496.09	1.9332	1.9741
51	496.09	1.9332	1.9741
52	506.57	0.0000	60.5591

Table S12. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the Au@B₄₀.

53	552.47	7.4371	3.4640
54	566.61	0.0000	0.0494
55	575.78	3, 5603	11,2048
56	575 78	3 5603	11 2048
57	601 46	0.0000	0.0000
50	609.00	0.0000	0.0046
50	611 24	22. 3411	0.0540
29	PC.110	0.0000	0.0000
60	616.20	0.0094	0.5640
61	616.20	0.6594	0.5640
62	616.44	0.0000	3.8205
63	632.84	0.0000	73.1762
64	643.81	0.4398	0.3622
65	643.81	0. 4398	0.3622
66	650.38	0.0000	76.8910
67	671.44	0.0033	0.0137
68	671.44	0.0033	0.0137
69	679.10	0.0000	46.1332
70	689.51	7.5565	11.5895
71	696.82	9,2340	21,8976
72	698, 86	0 4424	0.0322
73	698.86	0 4424	0.0321
74	737 58	0.0000	11 1885
75	747 46	4 0960	2 2072
70	747.40	4.9009	2.2212
10	141.40	4.9009	2.2212
70	131.12	0.0000	0.0000
10	110.56	0.0000	1.0911
1.9	rr4.28	22. 1953	10.1355
80	(93. (3	5.5151	5.1493
81	800.43	8.9462	17.6604
82	800.43	8.9462	17.6604
83	820.66	5.5799	2.2852
84	820.66	5.5799	2.2852
85	838.12	0.0000	9.5237
86	839.67	0.3606	3.3565
07	920 67	0 2606	2 2565
01	039.01	0.3606	3.3565
00	000.31	0.0000	21.0041
89	887.41	0.0000	0.0000
90	907.02	0.0000	10.5943
91	976.82	4.5169	0.1262
92	976.82	4.5169	0.1262
93	1007.62	0.0000	1.8333
94	1021.10	8.8935	0.3089
95	1021.10	8, 8935	0.3089
96	1033.91	0.0000	0.0000
97	1077.45	16.4693	0.3554
98	1125.36	0.0000	55.8473
99	1130.44	11.6217	0.5946
100	1130.44	11.6217	0.5946
101	1158.75	0.0000	0.0047
102	1169.16	0.0000	38.8915
103	1174.00	13.5837	16.0843
104	1179.39	11.4936	0.7578
105	1179.39	11, 4936	0 7578
106	1212 66	0 0000	0.0000
107	1220 54	30, 5068	0.1886
108	1220.54	30 5068	0 1886
100	1000.01	00.0000	0.1000

109	1225.25	0.0000	17.2550
110	1233.27	97.6870	31.0998
111	1246.69	0.0000	0.0000
112	1246.75	175.8987	6.5879
113	1246.75	175.8987	6.5879
114	1275.70	0.0000	30.5867
115	1290.86	5.7017	15.7698
116	1290.86	5.7017	15.7698
117	1303.72	0.0000	217.8701

Mode # 🔺	Freq	Infrared	Raman Activity
1	66.58	0.0018	0.0289
2	77.31	1.2489	2.0152
3	87.66	2,7487	2,5637
4	147.06	15, 5233	2.1010
5	151.19	3,8262	10.2311
6	177.46	0.0067	22,6894
7	183.95	5,9695	11.6164
8	189.96	1.9927	29.6314
9	192.42	0.0373	2,2156
10	216.05	0.1955	5.2674
11	226.87	1.1268	19.0406
12	235.32	0.2020	4.7024
13	255.27	4. 3274	2.1783
14	259.22	4.1312	5.8647
15	280.62	18.0036	0.4541
16	288.65	0.1806	2.5161
17	289.93	25.4529	15.3627
18	304.48	0.1390	4,6732
19	309.58	1.8413	10.1302
20	319.00	0.8134	16.1632
21	323.62	7.2458	9.6736
22	332.82	6.6468	8.1557
23	344.11	8.1546	11.1158
24	350.33	0.0963	9.8097
25	357.55	3.8633	3. 3731
26	366.41	1.6600	10.2532
27	367.47	35.8582	0.7630
28	372.32	0.1889	0.3994
- 29	386.79	11.4971	6.1171
30	391.43	0.3965	2.4414
31	397.41	0.2727	3.8066
32	398.08	0. 5944	2.3688
- 33	401.29	2.7411	60.3822
34	409.27	16.7991	10.5773
35	421.43	1.5517	55.2214
36	428.49	0.2765	0.5991
37	429.99	0.5029	10.1778
38	438.51	0.0802	0.5922
39	443.90	0.8247	8.2353
40	445.60	1.7409	15.2973
41	450.51	2.4076	29.5073
42	455.26	0, 9255	52.1424
43	460.32	0.0073	0.6612
44	467.51	0.3353	5.9114
45	467.71	0.5338	1.4587
46	475.14	15.2585	19.1240
47	479.94	6.3171	0.8274
48	489.12	0.0304	5.0116
49	496.85	5.7718	8.3182
50	502.18	0.3376	5.7941
51	504.23	4. 1579	3.3384
52	509.92	1.8715	13.7316

Table S13. Predicted normal mode frequencies (cm⁻¹) and the infrared and Raman activities for the Au@B₄₀⁻.

53	538.02	0.9326	5.6515
54	542 94	12, 1880	5, 7957
55	568 71	0 1461	3 8599
56	577 20	1 2004	7 6725
50	577.25	0.0409	14 5556
51	511.15	9.9400	14.000
58	581.44	2.0825	1.1221
59	594.85	0.2709	1.1461
60	615.17	0.9410	1.7078
61	616.77	10.4705	3.3057
62	618.25	18.1725	6.8860
63	631.32	0.2750	2.0001
64	640.19	5.0054	7.1233
65	645.52	0.3895	73.2691
66	648.81	1.8647	0.2132
67	654.75	0.0291	0.7866
68	656, 29	0.6150	5, 5329
69	667 56	7 9990	36 7354
70	676 99	7 6659	3 6802
71	600 50	0 5884	0.5100
70	601 79	1 0720	0.0100
12	091.10	1.2132	20.2304
13	106.22	0.1225	0. 9590
74	707.51	3.2981	16.9160
75	711.64	4.5240	11.7234
76	731.13	1.6516	12.3848
77	738.57	7.6053	17.1303
78	749.91	10.6459	12.0409
79	765.27	0.1096	1.3495
80	777.81	22.9312	4.1256
81	782.45	8.7928	3.6175
82	794.33	7.0337	16.6455
83	794, 74	11.3882	16.9177
84	821, 93	10,2878	19.3184
85	830, 98	1 9992	4 1408
86	831 34	1 4457	11 7468
00	001.01	1. (10)	11.1100
07	941 40	1 1010	12 0004
01	041.40	1.1010	13.0094
00	044.00	1.1001	22.4199
89	872.48	0.0292	2.9412
90	888.92	0.8911	8.1747
91	937.53	1.5023	1.6342
92	951.17	9.7813	3.8946
93	987.02	1.0720	3.9733
94	987.26	9.2504	1.7912
95	1012.68	20.6128	1.3175
96	1017.28	10.2902	3. 4658
97	1028.53	15.8235	2.6299
98	1087.52	7.3810	24.1442
99	1114.05	9.0258	1.7483
100	1124.19	0.1619	0.0130
101	1125.97	2.1217	39.8079
102	1148.46	16.8617	17 6822
103	1160.62	10.5318	31 6818
104	1165 44	3 2328	5 0541
105	1170 04	50 0001	20 6954
106	1107 47	0.0551	20.0034 6 E2E4
107	1101.41	8.0011 E E170	0.0001
100	1205.60	0.0172	44.4109
108	1216.76	144.4773	13.4209

109	1218.74	5.7330	4.7198
110	1220.07	0.1979	7.7783
111	1226.69	113.5062	5.9668
112	1253.64	54.5267	42.1588
113	1259.30	73.9136	5, 5909
114	1281.71	0.2263	41.1887
115	1294.19	28, 3925	23, 6992
116	1298.61	0.1721	17.5009
117	1305.77	7.5714	280. 9995