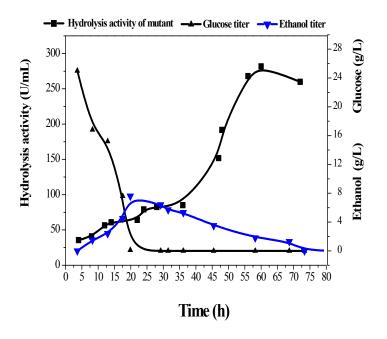
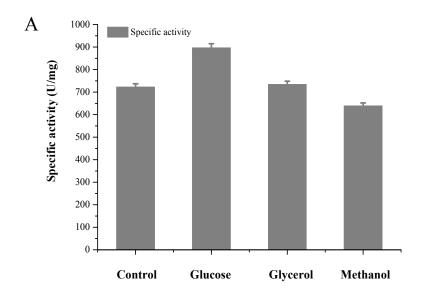
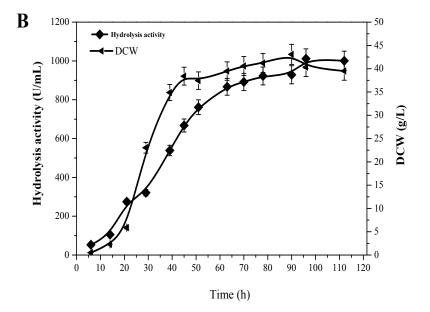
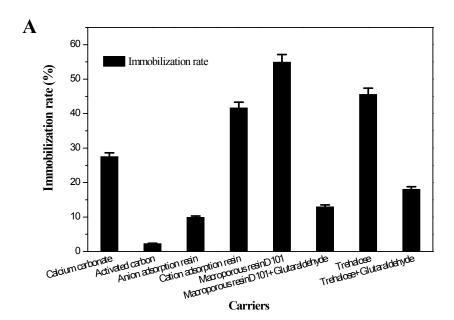

- Fig. S1 Hydrolytic activities of the A141S and wild-type (WT) CALB on *p*-NPs with varying carbon chain lengths (C2–C12). Relative enzyme activities depicted are the averages of three independent experiments, with error bars as indicated. Substrates: 4-nitrophenyl acetate (*p*-NPA), 4-nitrophenyl butyrate (*p*-NPB), 4-nitrophenyl octanoate (*p*-NPO), 4-nitrophenyl decanoate (*p*-NPDe), and 4-nitrophenyl dodecanoate (*p*-NPDo). Substrate screening for characterizing the volume of the substrate pocket of CALB. When the substrate was *p*–NPB, the gap of the relative activity between the A141S mutant and CALB (W-T) was larger than that of the others, which indicates that the cavity volume of the A141S mutant was reduced by 35.19 %. *p*-NPB was the best substrate for characterizing the volume of the substrate pocket of CALB.
- Fig. S2 Hydrolytic activity of CALB double mutants and liquid chromatographic analysis of the product of the A141S-A283V mutant. (A) Hydrolytic activity of CALB double mutants.
 (B) The liquid chromatograph of R-J₆ production by the A141S-A283V mutant.
- Fig.S3 Effect of initial pH, glucose concentration, fermentation time, and induction temperature on EF5 expression.
- Fig.S4 Effect of inducers on EF5 protein expression. (A) Effect of different inducers on EF5 protein expression. (B) Enhancing the protein expression by feeding 25 g/L glucose.
- Fig.S5 Optimization of the EF5 immobilization conditions. (A) CALB immobilization on carriers of differing particle size; immobilization rate (%)= activity of immobilized enzyme / total enzyme activity × 100%. (B) Effect of pH on EF5 immobilization; (C,D) Effect of temperature and time on EF5 immobilization; (E) Effect of enzyme: carrier ratio on EF5 immobilization
- Fig.S6 The liquid chromatograph of R-J6 producted by the EF5 mutant. (A) The Standard of (R)-3-TBDMSO glutaric acid methyl monoester; (B) The racemate of 3-TBDMSO glutaric acid methyl monoester, the retention times of R-J6 and S-J6 were 6.6 and 7.0 min, respectively; (C) The liquid chromatograph of R-J6 (concentrated reaction solution) by the EF5; (D) The liquid chromatograph of R-J6 (purified product) by the EF5 mutant, with ee of 98.5%.
- Fig.S7 The HPLC data of the purified R-J6 (final product) by the EF5. HPLC conditions: C18 column (250mm×4.6mm, 5mm), acetonitrile: water =1:9, UV 210 nm, 1 ml/min, 25 °C. Product purification process: an equal volume aqueous solution (pH 8.0) was added to the reaction solution, discarded the organic phase; Next, the aqueous phase was washed with MTBE three times; Then, the pH of the aqueous phase was adjusted to 6.0 with 0.5 M HCl, extracted with MTBE (three times), dried over anhydrous Na₂SO₄; The organic phase was concentrated by rotary evaporation and the target product has been harvested.

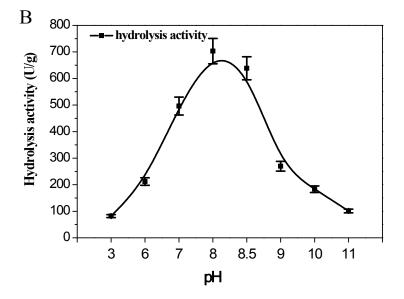


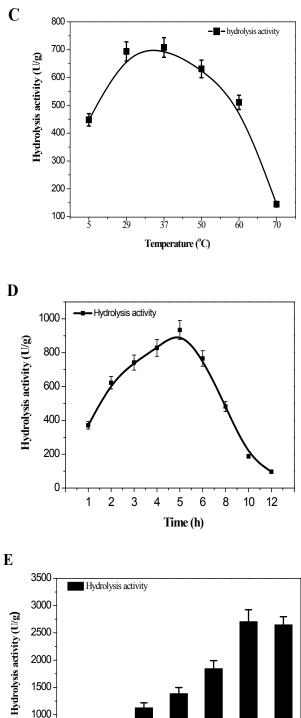
(Fig. S1)

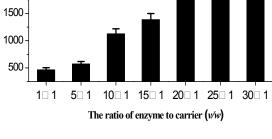



(Fig. S2)

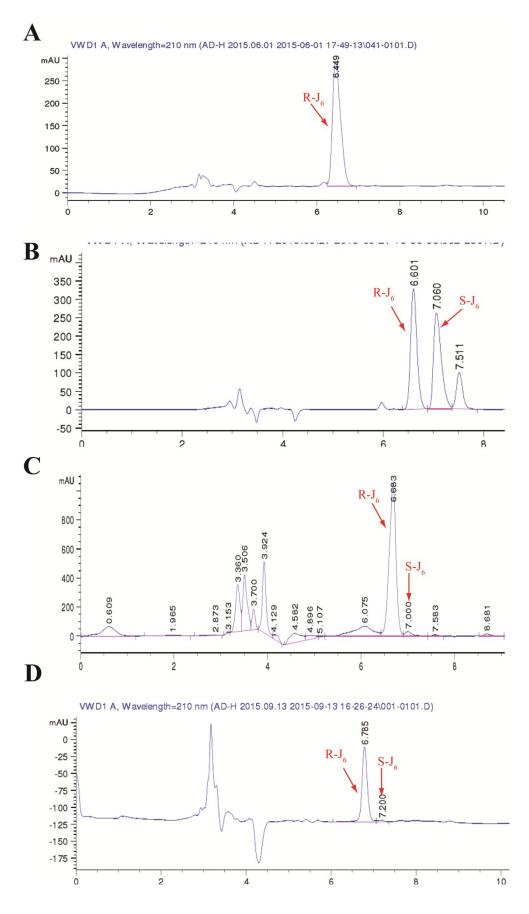


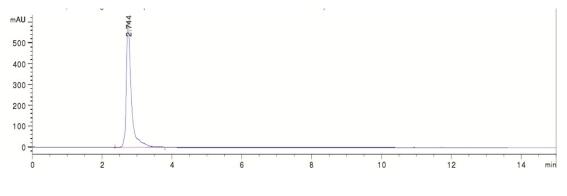

(Fig.S3)





(Fig. S4)





(Fig. S5)

(Fig. S6)

(Fig. S7)

Candidate amino acids	Occurrence frequency (%)				
W104	S	D	А	Т	
	63.8	10.7	7.9	6.2	
Q106	Q	H	A	ĸ	
	93.7	4.8	1.1	1	
S47	S	<u>N</u>		Ā	
	30.7	27.4	24.7	5.3	
D134	D	$\overline{\mathbf{s}}$	P		
	84.2	11.1	10.6	3.2	
A141	А	S	G	E	
A141	67.7	7.1	5.1	2	
G137	G	R			
	99.5	0.5			
L278	L	I	V	Ā	
	51.7	21.2	11.9	3.4	
T138	T	<u> </u>	L		
	89.9	10	1	8.1	
I189	I	$\overline{\mathbf{v}}$	L	<u>s</u>	
	58.6	32.3	6.1	1	

Table S1 Highly frequent amino acids, as revealed by a multiple sequence alignment

Note: Candidate amino acids was selected by docking; Occurrence frequency was calculated by multiple sequence alignment.

Table S2 Primers used for site-directed mutagenesis of the CALB gene

Primer	Sequence (5'- 3')
T138A-For	CCGACTACAAGGGCGCCGTCCTCGCCGGCCC
T138A-Rev	GGGCCGGCGAGGAC GG CGCCCTTGTAGTCGG
S47N-For	CACCACAGGTCCACAGAACTTCGACTCGAACTGGA
S47N-Rev	TCCAGTTCGAGTCGAAGTTCTGTGGACCTGTGGTG
I189V-For	CGGCGACCGACGAGGTCGTTCAGCCTCAGGT
I189V-Rev	ACCTGAGGCTGAACGACCTCGTCGGTCGCCG
A141S-For	AGGGCACCGTCCTCTCGGGCCCTCTCGATGC
A141S-Rev	GCATCGAGAGGGCCGGAGAGGACGGTGCCCT
D134S-For	TGGCCTTTGCGCCCTCGTACAAGGGCACCG
D134S-Rev	CGGTGCCCTTGTA CGA GGGCGCAAAGGCCA
W104D-For	ACTCGCCCCTCGACGACTCGTACCTCTTC
W104D-Rev	GAAGAGGTACGAGTCGTCGAGGGGGGGAGT
Q106H-For	CTTACGTGGTCTCACGGTGGGCTGGTGGC
Q106H-Rev	GCCACCAGCCCACCGTGAGACCACGTAAG
A283V-For	CGCCCTGCGGCTGTGGCCATCATCGCGG
A283V-Rev	CGCGATGATGGCCACAGCCGCAGGGGGCG

Note: The mutated amino acids codons are underlined in bold.

Libraries		The primers
L ihanna L	189-190-S	GGCCACCGACGAGNNNNNCAGCCCCAGGTGTC
Library I	189-190-A	GACACCTGGGGCTGNNNNNNCTCGTCGGTGGCC
T '1 TT	134-138-S	GCGCCCNNNTACAAGGGCNNNGTCCTCTCCGGC
Library II	134-138-A	GCCGGAGAGGACNNNGCCCTTGTANNNGGGCGC
Library III	278-282-S	GCGCTGNDTGCCCCTGCNDTTGCGGCCATCAT
	278-282-A	ATGATGGCCGCAAHNGCAGGGGCAHNCAGCGC
1 1 11 7	42-47-S	CAGGCNDKACGGGTCCGGGANDKTTCGACTCGAAC
Library IV	42-47-A	GTTCGAGTCGAAMHNTCCCGGACCCGTMHNGCCTG

Table S3 Primers used for A141S-S283V semi-saturation/saturation mutagenesis

Mutations have been marked in bold.

Variants	Docking Energy ^a		E/Ea		ee_R^{b}
	<i>R</i>-J ₆ (kcal/mol)	S-J ₆ (kcal/mol)	$ = \mathbf{E}_R / \mathbf{E}_S^a $	<i>R</i> -J ₆ Titer(g/L) ^b	(%)
S47N	-88.49	-77.76	1.138	-	-
A141S	-92.01	-82.22	1.119	10.1	17.6
W104D	-88.9	-81.70	1.089	-	-
Q106H	-105.93	-98.41	1.076	-	-
D134S	-92.03	-88.44	1.041	-	-
T138A	-92.09	-89.08	1.034	-	-
G137R	-96.02	-93.59	1.023	-	-
WT ^b	-91.22	-93.477	0.975	4.4	-63
L278I	-84.13	-89.16	0.944	-	-
I189V	-85.03	-96.55	0.881	-	-
Note: E_R/E_S r	represents the ratio of the	ne docking energy of t	he <i>R</i> -isomer	to that of the S-isomer.	WT, W
CALB; ee_R i	ndicates the ee for R	J_6 ; ee _s indicates the e	e for S-J ₆ . a	. the result was from	molecul
, •• _A -			v0. u		

docking; b. it was experimental result.

Table S4 Docking free energy and ee values of the variants