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Other Possible Phase Patterns for Case (I)

Here we show some possible patterns of the products of MO coefficient of chromophores equivalent
to the case (I). When we set the phase of the HOMO (LUMO) of the chromophore 1 multiplied by
—1, we obtain an equivalent pattern to the case (I), Table S1 (Table S2). As another case, when we
set the phases of the HOMO and LUMO of the chromophore 1 multiplied by —1, we obtain another
equivalent pattern to the case (I), Table S3. Like this, there are many seemingly different but
physically equivalent phase patterns exist. In the text, we discussed the two simplest patterns
shown in Table 1 and 2.

The case for Table S1, where the chromophores are linked with two PC bridges, is schematically
shown in Figure S1. In this case, the product of the horizontal couplings is considered to be
negative, thus Jer < 0, as opposed to the calculated value in the text (1-(2,2), 1-(3,1) and 1-(3,3)).
However, the sign flip also occurs in Jeou, Fur, and Vegrr, and hence, the physics does not change
totally.  Different patterns that represent the same situation in physics with Table S1 are shown in
Table S2 and S3.

Table S1. Products (Prefactor in Eq 14) of MO Coefficient of Chromophores Equivalent to the
Case (I): the HOMO of the Chromophore 1 Is Multiplied by —1 %?

H2@bl H2@b2 L2@bl L2@b2
Hl@bl - -
Hl@b2 - -
L1@bl + +
L1@b2 + +

¢ Hi(@bj (Li@byj) represents an index of the MO coefficient of the HOMO (LUMO) of the
chromophore i at the linked site with the bridge j, ¢, jyni (cugyri)-

b+ (-) indicate the positive (negative) sign of the product of MO coefficients of the chromophore 1
shown in the left column and of 2 shown in the top row. Blank cells represent that any signs of the
product are possible for these cases.

Table S2. Products (Prefactor in Eq 14) of MO Coefficient of Chromophores Equivalent to the
Case (I): the LUMO of the Chromophore 1 Is Multiplied by —1 %%

H2@bl H2@b2 L2@bl L2@b2
Hil@bl + +

Hi@b2 + +
Li@bl - -

Li@b2 ~ ~

a.b See Table S1.

Table S3. Products (Prefactor in Eq 14) of MO Coefficient of Chromophores Equivalent to the
Case (I): the HOMO and LUMO of the Chromophore 1 Are Multiplied by -1 %%

H2@bl H2@b?2 L2@bl L2@b2

Hl@bl _ -
Hl@b2 - -
L1@bl - -

L1@b2 - -

a.b See Table S1.

S2



Case (I-PP)'

Chromophore 1 Chromophore 2

. Bridge 1 : . :
. Bridge 2 O . O

Fhin FrL
Constructive Constructive

( ——) oy ©
(—) (—)

Fr Fu
Constructive Constructive

Figure S1. A possible phase pattern (case (I-PP)") that is equivalent to the case (I-PP). This gives the same signs and

amplitudes of electronic couplings with those in the case (I-PP), provided the amplitudes of the molecular orbital coefficients
are the same.
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Definition of Relative Phase of Molecular Orbital

In order to simplify the discussion, we have applied the consistent phase definition for all the
molecules. For the series 1-(m,n) and 2-(m,n), all these MOs are set to be positive (white) at the
linking sites with the bridge 1 in the top view (see Figure S2 and S3 for example). For BET-B, all
the MOs are set to be positive at the sites linked with the bridge in the top view (see Figure S4).
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Figure S2. Molecular orbitals of 1-(2,2): the HOMO of the chromophore 1 (a) and 2 (b), the LUMO of the chromophore 1(c)
and 2(d), respectively. Positive and negative values are represented as white and blue isosurfaces, respectively. Isovalue is
+0.03 au.
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Figure S3. Molecular orbitals of 2-(2,2): the HOMO of the chromophore 1 (a) and 2 (b), the LUMO of the chromophore 1(c)

and 2(d), respectively. Positive and negative values are represented as white and blue isosurfaces, respectively. Isovalue is
+0.03 au.
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LUMO; LUMO:2

Figure S4. Molecular orbitals of BET-B: the HOMO of the chromophore 1 (a) and 2 (b), the LUMO of the chromophore 1(c)
and 2(d), respectively. Positive and negative values are represented as white and blue isosurfaces, respectively. Isovalue is
+0.03 au.
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CT State Energy Dependence

Here we present the CT state energy dependence on each CT mediated electronic coupling matrix
element estimated from the second order perturbation theory (Figure S5 and S6).
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Figure S5. CT state energy dependence of the energy corrections AFgg (a) and AE7r (b), CT mediated contribution in excitonic
coupling Jer (¢) and the FE-TT coupling | Vg 1| (d) of 1-(m,n).  Filled and blank markers represent even and odd
combinations, respectively. Black, red and blue markers represent n = 1, 2 and 3, respectively. Square and circle markers

represent m = n and m # n, respectively.
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Figure S6. CT state energy dependence of the energy corrections AFgg (a) and AE7r (b), CT mediated contribution in excitonic
coupling Jer (¢) and the FE-TT coupling | Vg 11| (d) of 2-(m,n).  Filled and blank markers represent even and odd
combinations, respectively. Black, red and blue markers represent n = 1, 2 and 3, respectively. Square and circle markers

represent m = n and m # n, respectively.
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Transition Density in Tetracene

Transition density
(the product of HOMO and LUMO)

Figure S7. Schematic picture of HOMO (a), LUMO (b) and their product (c) of tetracene.
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Decomposition Analysis of Electronic Coupling for BET-B

Here we present the decomposition of the Fock matrix elements of BET-B into the bridge-mediated
and direct-overlap contributions (see Figure S8). As seen in the previous study, the bridge-
mediated contribution through the ortho-linked conjugated bridge is found to be moderate. The
direct-overlap contribution is, however, much larger than those, especially in the non-horizontal
couplings Fyp and Fry. From this large direct-overlap contribution, BET-B has the strongly
stabilized TT state relative to the FE state as pointed out in the text.
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Figure S8. Decomposition analysis of the Fock matix elements in BET-B. Total Fock matrix elements are decomposed into

bridge-mediated and direct-overlap contributions.
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Proof of Eq 15

We write eq 15 again here as eq S1,

(Etr — Ere)™ > Err — Ere. (S1)
This is, of course, not valid in general; nevertheless, it is valid for some special but important cases.
First, we assume the covalently-linked dimer is dominated by bridge-mediated contributions in its
electronic couplings, F; and J*T.  Second, let the CT state energy be higher than FE and TT state,

Ecr > Err, EFg (S2)
Third, let the energy levels of FE and TT states be approximately equal,

Erg ~ EtT, (S3)
which may be equivalent for this proof with

Ecr >> Etr, EFg, (S4)
We consider three cases:

(a) Fij = ,8 for all i,j (SS)

(b) F,‘j~ﬁ for all i,jandFHH>FHL:FLH>FLL_ (S6)

(c) Fuu, Frp >> Fyr, Frg > 0 (S7)

The signs of the Fock matrix elemenst are assumed to be positive for all the elements. In the case
(a), the effective energy difference is

(Err — Ere)™ = (Err — Ere)

__(3F%L+_3Pfﬁ) (F%H—FFfL4—ﬂPhHF1d]

2Acr 2 Acr Act
3F}, — (Fun + Fro)?
Act
case (a) ﬁ2
= ———>0 (s Act < 0)
Act , (S8)

where Act (< 0 from eq S2) is the energy difference between the FE and CT states, or between the
TT and CT states (both are considered to be similar in the order of magnitude). In the case (b), we

approximate the non-horizontal couplings as

f
FuL = FLa ~ (Fau + FLL)/2 déﬁ, (S9)

This can be a good approximation for the case considering the next-nearest-neighbor effect.!  Then,
we obtain

(Err — Ere)™ — (Err — Exg)

ase 72

we® BT 0 Aer < 0)

Act . (S10)

For the case (c), we obtain
(Etr — Erp)™ — (Evr — Erp)
case (¢ Fuy + Frp)?
e ©  (Fuu + Fru) 0 ¢+ Acr < 0)
Act . (S11)

Eq S1 has been proved for the cases (a)—(c), at least approximately.

The case (a) corresponds to, for example, bridge-mediated couplind through bridges (either
constructive or destructive) evaluated at Hiickel level of theory, while the case (b) corresponds to the
same situations but evaluated at a higher level of theory including the next-nearest-neighbor
interaction such as ab initio molecular orbital theory.! The case (b) corresponds to singly-bridged
systems' and doubly-bridged systems with the cases (I-PP) and (I-PN) as shown in the text. The
case (c) correcponds to the case (II-PP) in the text. Eq S1 states that unless the rational design of
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bridges or fine control of interchromophore configuration were carried out, which has been
demonstrated by the doubly-bridged systems of the case (II-PN) and has also been found in BET-B
(see text), the energy requirement for SF in a dimer becomes less exothermic by inter-chromophore
couplings than that in a monomer as shown in Figure 7.
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Eigenvalues and Eigenvectors of Hamiltonian Eq 1

Exact diagonalization of eq 1 in the text gives the eigenvalues shown in Figure S9. Strong mixing
between diabatic states is reflected in large energy splits in even combinations of 1-(m,n), and all

bridge patterns of 2-(m,n). On the contrary, the odd combinations of 1-(m,n) show very small
energy splits.
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Figure S9. Eigenvalue of eq 1 obtained by the exact diagonalization for (a) and 1-(m,n) for (b) 2-
(m,n). Main characters of the lowest eigenstates are also described (see also Figure S10).
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The main components of eigenvectors are characterized their coefficients.  According to the
previous study,? we define populations of an eigenvector &,

P(FE, k) = |C&50[* + [Cos1 | (S12a)
p(CT, k) = |C&A* + |CXcl? (S12b)
p(TT, k) = |Chp|?, (S12¢)

Calculated populations for the lowest excited state S; is shown in Figure S10. In 1-(m,n), the TT
character is found to be the primary component in the lowest eigenstate for all (m,n), while in 2-
(m,n), the primary component significantly differs for each.  Large TT populations in odd-
combinations of 1-(m,n) are understood as the results of small mixing between FE and TT diabatic
states due to small electronic couplings and lower TT diabatic energy than FE. In 2-(m,n), the
even-combinations is turned out to give FE-dominated lowest eigenstates, while the odd-
combinations TT-dominated lowest eigenstates. The above findings are in good agreement with
the model prediction considered in Section 2, and ab initio calculation results shown in Section 5,
except for the even combinations of 1-(m,n). The disagreement in the even combinations of 1-
(m,n) between perturbative and variational calculations may be attributed to very strong electronic
couplings both in horizontal and non-horizontal parts. In such a case, the character of the lowest
eigenstate can be a delicate problem (see also Figure 7).
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Figure S10. Population of the lowest eigenstates obtained by the exact diagonalization for (a) 1-
(m,n) and for (b) 2-(m,n).
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Detailed Decomposition Analysis of Electronic Coupling in 1-(1,1)

A doubly-bridged chromophore system 1-(1,1) was found to show significant contributions in its
electronic couplings rather than direct contribution and bridge-mediated contribution from m-orbitals
of bridges (Figure 5a). Here we further investigate this seemingly strange electronic structure of
this molecule.

The molecule 1-(1,1) has a non-planar structure, that is, distorted n-backbones, belonging to Cy,
point group. The geometry is graphically shown in Figure S11. This non-planarity is considered
as a result of strong nucleus repulsion between hydrogen atoms at the tops of zigzag edges of the
chromophores, of which distance is only Ry_y = 2.039 A even in the optimized geometry. The non-
planarity of the chromophores caused by H-H repulsion might induce significant o-1 mixing even in
the frontier orbitals. The HOMO and LUMO at one of the chromophores that were used as the
diabatic basis for electronic coupling calculation are shown in Figure S12. With decreasing the
magnitude of isovalue from 0.03 au to 0.01 au, we find that the LUMO does not have pure n-orbital
character anymore but should mix with c-orbitals of bridges and the other chromophore. This is
not the case for the HOMO, where n-orbital character seems to be kept.

Figure S11. Molecular geometry of 1-(1,1).
hydrogen repulsion between chromophores.

n-Backbone is slightly distorted due to hydrogen-

LUMO

®
@ - V
e,

e * T
\Y 2n® 99

& —

Molecular orbitals of chromophore 1 in 1-(1,1): (a) top view with isovalue +0.03 au,

Figure S12.

side view with

(b)

isovalue +0.03 au,

and (c)

side view with

1sovalue +0.01 au.
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In the text, we performed decomposition analysis for electronic couplings in order to investigate
the origin of electronic couplings in our model compounds. Here we do this again for 1-(1,1) with
a more detailed way. In the text, we decomposed the orbital space into the n-orbitals of bridge 1, 2
and others. Here we consider the contribution from the following twelve orbital subspaces of
which are composed from

(1) bridge core orbitals,

(2) bridge valence c-orbitals,

(3) bridge valence m-orbitals,

(4) bridge o-orbitals of higher principle quantum numbers,

(5) bridge m-orbitals of higher principle quantum numbers,

(6) chromophore 1 core orbitals,

(7) chromophore 2 core orbitals,

(8) chromophore 1 valence c-orbitals,

(9) chromophore 2 valence c-orbitals,

(10) chromophore 1 valence n-orbitals excluding the HOMO and LUMO,

(11) chromophore 2 valence m-orbitals excluding the HOMO and LUMO,

(12) others (bridge m-orbitals that lie approximately parallel to the molecular plane, bridge o-
orbitals, chromophore 6-/n-/6-orbitals of higher principle quantum numbers etc.).

Each orbital subspace includes 4, 8, 4, 16, 8, 18, 18, 64, 64, 16, 16 and 460 orbitals, respectively.
Note that we do not separate the contributions into that from bridge 1 and from 2, because here we
are not interested in quantum interference between bridges but in what kind of orbitals give so large
electronic coupling in 1-(1,1) rather than bridge m-orbitals.

Before going to the decomposition results, we recall the equation considered here. An electronic
coupling matrix element described as a Fock matrix element is described as the sum of direct and
mediated contributions,

PtER P = Pt(F — ENP + PH(F — EI)

CgoF — EDP

(S12)
We focus here only the second term,
A A ~ mediated
(i|PtEPlj)
= Y (il(F = EDk) (kG giqll) (I(F — ENPj)
k,leQ (S13)

To obtain a mediated electronic coupling, we have to sum up all the diagonal blocks of contributions
from each orbital subspace (1), (2), ..., (12), and all the off-diagonal blocks of contributions from
each pair of orbital subspaces, (1)—(2), (1)-(3), ..., (11)~«(12). The off-diagonal blocks may be
understood as higher-order terms beyond the second-order perturbation theory from the similarity to
a perturbation expansion. Note that the off-diagonal blocks were treated as the rest part (“others”)
of an electronic coupling in the main text because these were assumed to be very small.

The result of the decomposition analysis using the twelve orbital subspaces for Fyy of 1-(1,1) is
presented in Table S4. Table S4 indicates contributions from each orbital subspace both of
diagonal and off-diagonal blocks.  Off-diagonal part is doubled and shown as the lower triangle
part so that the sum of values presented in Table S4 gives the mediated term, eq S13. In spite of
non-planatity of the geometry and distorted n-backbones of chromophores, the main contribution to
this coupling is clearly dominated from valence m-orbitals of bridges. Off-diagonal blocks have
only small contributions, of which magnitude is one or more orders smaller than that of bridge
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valence m-orbitals.  This confirms that the HOMO of 1-(1,1) behaves well as a diabatic basis.
This agrees our picture obtained from a more simple decomposition that was performed in the text.

In contrast, the twelve orbital subspaces decomposition of /7| indicates a something problematic
and non-intuitive behaviour, see Table S5. A significant contribution from bridge valence n-
orbitals, 306.9 meV, is what we predicted in Sec 2.3. However, enormous contributions from
bridge valence c-orbitals up to 32 eV (!) in its amplitude is found. Furthermore, contributions from
off-diagonal blocks related to bridge core orbitals—bridge c-orbitals block ((2)—(1)) and bridge core
orbitals—chromophore valence c-orbitals block ((8)—(1), (9)—(1)) are found to have the same order
with the previous one. These significant contributions related to c-orbitals could be understood as
a result of the mn-backbone distortion in 1-(1,1). These contributions almost cancel out and result
the total value of —233.8 meV.

Apparently, although a decomposition of Fyuy helped to confirm our prediction by a simplified
model, the same decomposition of F1| gave us little physical insight into the origin of the electronic
coupling Fi;, especially of contributions rather than bridge valence m-orbitals.  This might be
attributed to that the LUMO of the chromophores in 1-(1,1) obtained in this study is not a well-
behaved diabatic electronic state. We find such a distorted n-orbital only at the LUMO of 1-(1,1),
while do not for any frontier orbitals of chromophores. We do not see this kind of problematic
behaviour in decomposition analysis for other model compounds. Therefore, we may conclude that
strong distortion of m-backbones could reduce physical meaning of diabatic character of the LUMO
in the chromophores in 1-(1,1), and thus the non-intuitive and physically meaningless interactions
was observed. The above discussion gives a caution for diabatic electronic state calculation in a
molecule with a distorted n-backbone, especially of related with its LUMO. Finally, we note that a
non-planar geometry of a molecule without a distortion in its m-backbone does not induce this kind
of problematic behaviour.'
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Table S4. Decomposition analysis for F of 1-(1,1) Evaluated by LC-BLYP/6-31G** Level

of Theory?
Orbital subspace 1 2 3 4 5 6 7 8 9 10 11 12
1B core -0.4
2 B valence o -2.3 0.7
3 B valence -7.4 29 336.8
4B o (d) 1.5 0.2 13.8 3.5
5B (d) 1.6 -0.6 -10.6 -1.1 4.7
6 C1 core 0.0 -0.0 0.0 -0.0 -0.0 0.0
7 C2 core 0.0 -0.0 0.0 -0.0 0.0 0.0 0.0
8 C1 valence o 1.6 -0.2 -1.9 -0.3 0.3 0.0 -0.0 0.0
9 C2 valence o 1.6 -0.2 -1.9 -0.3 0.3 -0.0 0.0 -3.2 0.0
10 C1 valence 0.0 0.0 -1.9 -0.0 0.4 0.0 0.0 0.0 -0.0 0.0
11 C2 valence 0.0 0.0 -1.9 -0.0 0.4 0.0 0.0 -0.0 0.0 0.0 0.0
12 Others 0.1 0.3 4.5 -0.0 -1.41 -0.0 0.0 -0.6 -0.6 -0.0 -0.0 -0.2

2 Values in meV. B: bridge 1 and 2, C1:

chromophore 1, C2: chromophore 2.

Table S5. Decomposition analysis for F, of 1-(1,1) Evaluated by LC-BLYP/6-31G** Level of

Theory?

Orbital 1 2 3 4 5 6 7 8 9 10 11 12
subspace

1B core 3940.3

2 B valence o 30380.4 -32250.6

3 Bvalence -601.4 681.5 306.9

4Bo(d) 3762 -51571 366 126.8

5B 1 (d) 2649 1414 84 -220 214

6 C1 core -48.4 611  -0.5 68 -0.0 0.0

7 C2 core -46.4 585  -0.5 65 -00 -01 00

8C1valencec  -20969.6 239417 -139.1 29786 -296 00 -26.7 0.0

9C2valence s  -20969.6 239417 -139.1 29786 -29.6 -282 -02 -93705 0.0

1170 C1 valence -8.6 18.7 112 19 -36 00 -0.0 00 -142 0.0

:r1 C2 valence -8.6 187 112 19 36 -00 00 -142 00 05 0.0

12 Others 22231 27195 333 -313.8 -86 17 17 5876 589.2 0.8 0.8 -36.8

a2 Values in meV.

B: bridge 1 and 2, C1: chromophore 1, C2: chromophore 2.
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