Supporting Information for

Facile synthesis of Cu/Ni alloy nanospheres with tunable size and elemental ratio

Jinglei Liu, Yiqun Zheng,* ShifengHou

National Engineering Research Center for Colloidal Materials Shandong University Jinan, Shandong 272000, P. R. China

*Corresponding author: Prof. Y. Zheng, E-mail: yiqunzheng@sdu.edu.cn

Figure S1. SEM images of Cu/Ni alloy nanospheres obtained using the standard procedure, except that TOP was absent

Figure S2. EDS pattern of $Cu_{50}Ni_{50}$ nanospheres with the diameter of 16.5 ± 1.7 nm.

Figure S3. EDS pattern of $Cu_{50}Ni_{50}$ nanospheres with the diameter of 6.9±1.9 nm.

Figure S4. EDS pattern of $Cu_{50}Ni_{50}$ nanospheres with the diameter of 22.9±2.2 nm.

Figure S5. EDS pattern of $Cu_{50}Ni_{50}$ nanospheres with the diameter of 27.3±2.7 nm.

Figure S6. EDS pattern of $Cu_{20}Ni_{80}$ nanospheres with the diameter of 18.0 ± 1.0 nm.

Figure S7. EDS pattern of $Cu_{33}Ni_{67}$ nanospheres with the diameter of 16.3 ± 0.6 nm.

Figure S8. EDS pattern of $Cu_{67}Ni_{33}$ nanospheres with the diameter of 19.7±1.5 nm.

Figure S9. EDS pattern of $Cu_{80}Ni_{20}$ nanospheres with the diameter of 19.7±1.2 nm.

Figure S10. XPS analysis of CuNi (1). (A) survey scan; (B) N 1s spectrum; (C) Ni $2p_{3/2}$ spectrum o; (D) Cu $2p_{3/2}$ spectrum.

Figure S11. XPS analysis of CuNi (8). (A)survey scan; (B) N 1s spectrum; (C) Ni 2p_{3/2} spectrum o; (D) Cu 2p_{3/2} spectrum.

Figure S12. Comparison of apparent reaction rates for reduction of 4-NP when Cu/Ni nanospheres with different elemental compositions were used as catalysts. The k_{app} value of pure Cu catalyst is 0.03 min⁻¹. The k_{app} value of pure Ni catalyst is 0.01 min⁻¹.

Figure S13. The catalytic performance within five cycles for the reduction of 4-NP catalyzed by CuNi (8).

Figure S14. The SEM images of CuNi (8). (A) before five cycle of catalytic reactions; (B) after five cycle of catalytic reactions.

Figure S15. HAADF-STEM and STEM-EDS elemental mapping images of Cu/Ni alloy nanospheres: (A) CuNi (1); (B) CuNi (3); (C) CuNi (4); (D) CuNi (5); (E) CuNi (6); (F) CuNi (7); (G) CuNi (8).

	Cu (mg/mL)	Ni (mg/mL)	Cu/Ni nanospheres (mg/mL)
CuNi (1)	1.265	1.177	2.442
CuNi (2)	1.115	1.124	2.239
CuNi (3)	1.133	1.125	2.258
CuNi (4)	1.175	1.031	2.206
CuNi (5)	0.361	1.344	1.705
CuNi (6)	0.490	1.126	1.616
CuNi (7)	1.222	0.594 1.816	
CuNi (8)	1.527	0.380 1.907	

Table S1. AAS analyses of Cu/Ni alloy nanospheres with different sizes and elemental ratios (50% mass loading of total metal) as catalysts before the 4-NP reduction reaction.

Catalyst	Mass ratio of catalyst to 4-NP	K _{app} (min ⁻¹)	Ref.
Pt-Ni	1:1	0.37	54
Cu-Ag	5:2	0.42	55
Cu-Ni	50:7	0.89	56
Cu-Ni	1:2.8	0.8	This study

 Table S2. The catalytic performances of alloy nanoparticles to 4-NP in other literatures.