Electronic Supplementary Information (ESI) to:

Synthesis and ecotoxicological impact of ferrocene-derived amino-

phosphonates using bioassays battery

Jarosław Lewkowski^{*},^{,a} Rafał Karpowicz,^a Marta Morawska,^a Piotr Rychter^{*},^{,b} Diana Rogacz,^b Kamila Lewicka,^b Piotr Dobrzyński,^{b,c}

^aDepartment of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland

^bInstitute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, 42-200 Częstochowa, 13/15 Armii Krajowej Av., Poland

^cCentre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland

Figs. 1-2 – NMR spectra of imines 1a-b

Figs. 3-14 – NMR spectra of aminophosphonates 2a-d

Figs. 15-17 – Digital photographs of studied plants

Fig. S1. ¹H NMR of *N*-Ferrocenylidene-*p*-anisidine (1a)

Fig. S3. ¹H NMR of dimethyl *N*-(4-methoxyphenyl)amino(ferrocenyl)methylphosphonate (2a)

Fig. S4. ¹³C NMR of dimethyl *N*-(4-methoxyphenyl)amino(ferrocenyl)methylphosphonate (2a)

Fig. S5. ³¹P NMR of dimethyl *N*-(4-methoxyphenyl)amino(ferrocenyl)methylphosphonate (2a)

CH₃

Fig. S6. ¹H NMR of dimethyl *N*-(4-methylphenyl)amino(ferrocenyl)methylphosphonate (2b)

Fig. S7. ¹³C NMR of dimethyl *N*-(4-methylphenyl)amino(ferrocenyl)methylphosphonate (2b)

Fig. S10. ¹³C NMR of dibenzyl N-(4-Methoxyphenyl)amino(ferrocenyl)methylphosphonate (2c)

Fig. S11. ³¹P NMR of dibenzyl *N*-(4-Methoxyphenyl)amino(ferrocenyl)methylphosphonate (2c)

Fig. S13. ¹³C NMR of dibenzyl N-(4-Methylphenyl)amino(ferrocenyl)methylphosphonate (2d)

Fig. S14. ³¹P NMR of dibenzyl *N*-(4-Methylphenyl)amino(ferrocenyl)methylphosphonate (2d)

Fig. S15. Digital photographs oat and radish seedlings treated with sample 2b. a) green part of plants (shoots), b) roots and c) extent of branching of roots in soil

Fig. S16. Digital photographs oat and radish seedlings treated with sample 2c. a) green part of plants (shoots), b) roots and c) extent of branching of roots in soil

Fig. S17. Digital photographs oat and radish seedlings treated with sample 2d. a) green part of plants (shoots), b) roots and c) extent of branching of roots in soil