Supporting Information

Lead-Free and Stable Antimony-Silver-Halide Double Perovskite MA₂AgSbI₆

Ya-Juan Li,‡^{a,b} Tao Wu,‡^c Lei Sun ^a Rui-Xia Yang,^a Peng-Fei Cheng, ^{a,b} Lei Jiang, ^a Qun-Qing Hao, ^{a,b} Tian-Jun Wang,^a Rui-Feng Lu^c and Wei-Qiao Deng ^{a*}

- a. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China. E-mail: dengwq@dicp.ac.cn
- b. University of the Chinese Academy of Sciences, Beijing 100039, P. R. China.
- c. Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, P R

China.

‡These authors contribute equally to this work.

Scheme S1. Preferred Orientations of MA Cation in the Perovskite Cavity

a, b and c are the crystallographics axes of the perovskite with tetragonal phase. A, B, C, and D represent the projection of the MA cation orientations within the ab plane, as measured by the angle θ . The tilting of the molecule with respect to the c-axis is measured by the φ angle.

Structure	MA Cation Orientation			
	Α	В	С	D
1	1-	1-	1-	1-
2	1-	1-;1-	1-	
3	2-	2-		
4	1+	1-	1-	1+
5	2+		2-	
6	1+;1-		1+;1-	
7	1+;1-		1+;1-	
8	1+;1-		1+;1-	
9	2-		2-	
10	Oriented along c axis			

Table S1. Orientation of MA Cations in Ten Structural Models

There are four MA cations in the unit cell of MA_2AgSbI_6 (see Figure 1).

Figure S1. The XRD spectra of powder reacted at different temperature 150 $^\circ\!C$, 200 $^\circ\!C$ and 220 $^\circ\!C$, respectively.

Figure S2. The thermogravimetric spectrum of MA_2AgSbI_6 under N_2

Figure S3. (a) SEM image of powder $MA_2AgSbI_{6.}$ (b) TEM image and SAED patterns of powder $MA_2AgSbI_{6.}$ The powder was suspended in n-hexane.