Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Legend of schemes

Scheme. S1 Reaction scheme for the preparation and labeling of sulfenic acid (SA) with Ln-DOTA-KE. Metallated Azide- DOTA (1) undergo a click reaction with alkyne ß-ketoester (KE) (2) to produce Ln-DOTA-KE (3).Click reaction conditions (a): azide: alkyne (2:1), THPTA: Cu(II)SO₄(5:1), sodium ascorbate (5 mM) and TEAA (100 mM, pH= 7.00), sonication in darkness for 1 h. Prepared Ln-DOTA-KE (3) is used after purification for SA labelling (4) where hydrogen peroxide is used as an oxidizing agent, SA labelling conditions (b): (H₂O₂) (5 mM) (8- fold excess to cysteine), Urea (8M), Ln-DOTA-KE (30- fold excess to cysteine) and THAM buffer 100mM, pH=8.4, 4 h, shaking at R.T.

Supplementary Information

Figure S1. Mass spectrum obtained by electrospray ionization quadrupole time-of- flight (ESI-q-TOF) mass spectrometry for Ln-DOTA-KE. The Ln metal used was standard Nd (expected m/z Nd-DOTA-KE 780.2095). Mass error for Nd-DOTA-KE (Δm)= -0.38 ppm, where Δm =(mass error/exact mass) ×10⁶.

Figure S2. Chromatogram of Nd-DOTA-KE obtained by size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). Monitored isotope was ¹⁴²Nd.

Figure S4. HPLC chromatogram for albumin purification from human serum with HiTrapTM Blue HP column, used binding buffer was 50 mM KH_2PO_4 (pH 7.00) and elution buffer was 50 mM KH_2PO_4 + 1.5 M KCl (pH 7.00). Signal was monitored at 280 nm, 10 µg of collected fractions A (plasma proteins) and B (albumin) were monitored by 10 % SDS- PAGE, band of purified albumin (fraction B) appeared at around 70 KDa in the inset.

Figure S5.10% SDS- PAGE for $3\mu g$ of albumin band is shown for: (A) human serum and (B) purified albumin from human serum (C) Nd-DOTA-KE-HSA with 8 excess H_2O_2 and (D) Nd-DOTA-KE-HSA with 5 excess H_2O_2 .

Figure S6.Error propagation plot for the standard ¹⁴²Nd and the spiking solution of ¹⁴⁵Nd.The error propagation plot represents the theoretical optimum ratio (R_m) that should present between the ¹⁴⁵Nd spiking solution and the samples with the standard ¹⁴²Nd in order to achieve the best precision for the measurement, where it was shown to be within 0.01 - 1.

