RSC Adv. Supporting Information

Supporting Information

Asymmetric Brønsted Acid-Catalyzed Friedel–Crafts Reaction of Indoles with Cyclic N-Sulfimines

Sang Gyu Lee and Sung-Gon Kim*

Department of Chemistry, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-760, Republic of Korea

Table of Contents

General Information	S2
Characterization Data of Compounds 4a-4y, 6	S2-S16
¹ H and ¹³ C NMR Spectra	S16-S41
HPLC Analysis	- S42-S66

General Information. Organic solvents were distilled prior to use. Organic solutions were concentrated under reduced pressure using a rotary evaporator. Chromatographic purification of products was accomplished using forced-flow chromatography on ICN 60 32-64 mesh silica gel 63. Thin-layer chromatography (TLC) was performed on EM Reagents 0.25 mm silica gel 60-F plates. Developed chromatograms were visualized by fluorescence quenching and with anisaldehyde stain. ¹H and ¹³C NMR spectra were recorded (400 MHz for ¹H and 100 MHz for ¹³C), and were internally referenced to residual protio solvent signals. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz) and integration. Data for ¹³C NMR are reported in terms of chemical shift. IR spectra were recorded on an FT IR spectrometer and are reported in wave numbers. Optical rotations were taken on a digital polarimeter. High-resolution mass spectroscopy (HRMS) was performed by electron impact (EI). Enantiomeric excesses were determined using an HPLC instrument with Chiralpak columns as noted.

General Procedure for Friedel–Crafts Reaction of Indoles with Cyclic N-Sulfimines.

To a solution of cyclic *N*-sulfimine **2** (0.1 mmol) in toluene (0.75 mL) was added catalyst **3b** (0.01 mmol). The solution was stirred at -40 °C for 10 min, and then indole **1** (0.15 mmol) was added in one portion. The reaction mixture was stirred at -40 °C until cyclic *N*-sulfimine **2** was complete consumed, as determined by TLC. Then, the resulting mixture was diluted with water and extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried over anhydrous MgSO₄, and concentrated in vacuo. The crude residue was purified by flash column chromatography with EtOAc/hexanes as eluent to afford desired product **4**. The enantiomeric excess was determined using HPLC analysis.

(*S*)-4-(1-Methy-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4a). 29 mg, yield 93%, White solid; m.p. 84-86 °C; $[\alpha]_D^{22} = +64.9$ (*c* = 0.44, CHCl₃); 91% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.30 (m, 2H), 7.29–7.24 (m, 1H), 7.21 (d, *J* = 8.0 Hz, 1H), 7.17 (s, 1H), 7.12–7.02 (m, 4H), 6.23 (d, *J* = 7.8 Hz, 1H), 4.73 (d, *J* = 7.8 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.15, 136.46,

128.56, 128.35, 127.41, 124.31, 124.19, 121.63, 120.98, 119.16, 117.84, 117.69, 109.69, 108.99, 54.05, 31.98; IR (neat) 3269, 2921, 2851, 1717, 1614, 1550, 1478, 1450, 1412, 1193, 1164, 1098, 1011 cm⁻¹; HRMS (EI) m/z calcd for $[M]^+ C_{16}H_{14}N_2O_3S$: 314.0725 Found: 314.0754; Chiralpak IA column and IA guard column (15% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer $t_r = 17.8$ min and *minor*-isomer $t_r = 11.0$ min.

(*S*)-4-(1-Benzyl-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4b). 30 mg, yield 76%, White solid; m.p. 85-87 °C; $[\alpha]_D^{23} = +28.5$ (*c* = 0.38, CHCl₃); 90% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.26 (m, 5H), 7.25–7.18 (m, 3H), 7.17–7.12 (m, 2H), 7.10 (d, *J* = 8.2 Hz, 1H), 7.08–7.03 (m, 3H), 6.23 (d, *J* = 8.5 Hz, 1H), 5.32 (s, 2H), 4.77 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.25, 137.20, 136.60, 129.67, 129.00, 128.77, 128.38, 128.06, 126.96, 125.58, 125.29, 122.94, 121.93, 120.50, 119.07, 118.82, 111.41, 110.58, 55.15, 50.3; IR (neat) 3271, 2922, 2852, 1613, 1551, 1450, 1413, 1354, 1281, 1192, 1164, 1097, 1013 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₂₂H₁₈N₂O₃S: 390.1038 Found: 390.1025; Chiralpak IA column and IA guard column (15% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer *t*_r = 18.1 min and *minor*-isomer *t*_r = 22.5 min.

(*S*)-4-(1-Allyl-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4c). 29 mg, yield 85%, White solid; m.p. 115-117 °C; $[\alpha]_D^{21} = +50.4$ (*c* = 0.34, CHCl₃); 92% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.3 Hz, 1H), 7.32 (ddd, *J* = 9.0, 4.8, 0.7 Hz, 1H), 7.26–7.20 (m, 3H), 7.10 (d, *J* = 8.2 Hz, 1H), 7.08–7.02 (m, 3H), 6.23 (d, *J* = 8.5 Hz, 1H), 6.07–5.95 (m, 1H), 5.26 (dd, *J* = 10.2, 1.2 Hz, 1H), 5.14 (ddd, *J* = 17.1, 2.7, 1.6 Hz, 1H), 4.79–4.70 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.23, 136.98, 132.79, 129.65, 128.41(two peaks overlapping), 125.51, 125.28, 122.77, 121.98, 120.38, 119.02,

118.80, 118.12, 111.15, 110.46, 55.16, 49.03; IR (neat) 3262, 2921, 2851, 1614, 1579, 1551, 1467, 1450, 1412, 1356, 1262, 1193, 1164, 1097, 1011 cm⁻¹; HRMS (EI) m/z calcd for $[M]^+ C_{18}H_{16}N_2O_3S$: 340.0882 Found: 340.0896; Chiralpak IA column and IA guard column (10% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer $t_r = 20.1$ min and *minor*-isomer $t_r = 26.8$ min.

(*S*)-4-(1-Benzyl-5-methoxy-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4d). 40 mg, yield 95%, White solid; m.p. 181-183 °C; $[\alpha]_D^{21} = +58.8$ (*c* = 0.43, CHCl₃); 94% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.25 (m, 4H), 7.18 (d, *J* = 8.9 Hz, 1H), 7.16 (s, 1H), 7.14–7.05 (m, 5H), 6.84 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.66 (d, *J* = 2.3 Hz, 1H), 6.21 (d, *J* = 8.2 Hz, 1H), 5.26 (s, 2H), 4.81 (d, *J* = 8.3 Hz, 1H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.54, 151.30, 136.72, 132.25, 129.65, 129.13, 128.98, 128.48, 128.01, 126.86, 126.25, 125.30, 121.88, 118.79, 113.09, 111.42, 110.98, 100.67, 55.77, 55.09, 50.54; IR (neat) 3260, 2919, 1622, 1580, 1485, 1449, 1363, 1280, 1210, 1165, 1098, 1037cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₂₃H₂₀N₂O₄S: 420.1144 Found: 420.1156; Chiralpak IA column and IA guard column (20% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer *t*_r = 20.2 min and *minor*-isomer *t*_r = 24.6 min.

(*S*)-4-(5-Benzoyl-1-benzyl-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4e). 36 mg, yield 73%, White solid; m.p. 130-132 °C; $[\alpha]_D^{20} = +45.2$ (*c* = 0.34, CHCl₃); 97% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.26 (m, 9H), 7.19 (d, *J* = 9.0 Hz, 1H), 7.17 (s, 1H), 7.14–7.03 (m, 5H), 6.92 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.71 (d, *J* = 2.3 Hz, 1H), 6.18 (d, *J* = 8.5 Hz, 1H), 5.26 (s, 2H), 4.92 (s, 2H), 4.71 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.61, 151.26, 137.13, 136.67, 132.44, 129.68, 129.22, 128.99, 128.61, 128.42, 128.04, 127.96, 127.63, 126.90, 126.06, 125.31, 121.81, 118.80, 113.79, 111.45, 110.85, 102.27, 70.70, 55.16, 50.53; IR (neat) 3282, 2922, 2864, 1620, 1578, 1482, 1450, 1417, 1357,

1262, 1189, 1163, 1096, 1024 cm⁻¹; HRMS (EI) m/z calcd for $[M]^+ C_{29}H_{24}N_2O_4S$: 496.1457 Found: 496.1457; Chiralpak IA column and IA guard column (30% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer $t_r = 16.9$ min and *minor*-isomer $t_r = 27.7$ min.

(*S*)-4-(1-Benzyl-5-bromo-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4f). 35 mg, yield 74%, Colorless gum; $[\alpha]_D^{21} = +54.1$ (*c* = 0.37, CHCl₃); 88% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 1.5 Hz, 1H), 7.37–7.26 (m, 5H), 7.20 (s, 1H), 7.18 (d, *J* = 8.7 Hz, 1H), 7.13–7.02 (m, 5H), 6.18 (d, *J* = 8.3 Hz, 1H), 5.29 (s, 2H), 4.78 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.24, 136.14, 135.76, 129.92(two peaks overlapping), 129.09, 128.22, 128.19, 127.45, 126.84, 125.96, 125.37, 121.63, 121.40, 119.00, 113.93, 112.10, 111.14, 54.77, 50.59; IR (neat) 3274, 2921, 2851, 1610, 1580, 1548, 1468, 1450, 1413, 1301, 1192, 1164, 1097, 1026 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₂₂H₁₇BrN₂O₃S: 468.0143 Found: 468.0114; Chiralpak IA column and IA guard column (15% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer *t*_r = 18.4 min and *minor*-isomer *t*_r = 22.1 min.

(*S*)-4-(5-Methoxy-1-methyl-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4g). 34 mg, yield 98%, White solid; m.p. 84-86 °C; $[\alpha]_D^{18} = +86.2$ (*c* = 0.33, CHCl₃); 89% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.29 (m, 1H), 7.24 (d, *J* = 8.5 Hz, 1H), 7.14–7.03 (m, 4H), 6.91 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.64 (d, *J* = 2.3 Hz, 1H), 6.21 (d, *J* = 8.2 Hz, 1H), 4.74 (d, *J* = 8.2 Hz, 1H), 3.77 (s, 3H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.43, 151.28, 132.70, 129.68, 129.61, 128.54, 125.96, 125.25, 121.96, 118.76, 112.89, 110.85, 110.32, 100.52, 55.80, 55.08, 33.21; IR (neat) 3262, 2920, 1719, 1623, 1579, 1488, 1450, 1421, 1361, 1262, 1165, 1099, 1062, 1017 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺C₁₇H₁₆N₂O₄S: 344.0831 Found: 344.0822; Chiralpak IB column and IB guard column (20% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *minor*-isomer $t_r = 24.5$ min and *major*-isomer $t_r = 31.2$ min.

(*S*)-4-(5-Benzoyl-1-methyl-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4h). 41 mg, yield 99%, White solid; m.p. 82-84 °C; $[\alpha]_D^{19} = +73.7$ (*c* = 0.38, CHCl₃); 89% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.27 (m, 6H), 7.24 (d, *J* = 8.9 Hz, 1H), 7.11–7.01 (m, 4H), 6.98 (dd, *J* = 8.9, 2.3 Hz, 1H), 6.69 (d, *J* = 2.3 Hz, 1H), 6.16 (d, *J* = 8.4 Hz, 1H), 4.92 (d, *J* = 6.1 Hz, 2H), 4.71 (d, *J* = 8.5 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.44, 151.24, 137.17, 132.89, 129.83, 129.64, 128.60, 128.51, 127.94, 127.63, 125.80, 125.27, 121.91, 118.75, 113.62, 110.90, 110.20, 102.24, 70.74, 55.13, 33.20; IR (neat) 3268, 2922, 1622, 1578, 1547, 1451, 1415, 1390, 1261, 1189, 1165, 1099, 1020 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₂₃H₂₀N₂O₄S: 420.1144 Found: 420.1125; Chiralpak IA column and IA guard column (20% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer *t*_r = 26.6 min and *minor*-isomer *t*_r = 46.0 min.

(*S*)-4-(5-Bromo-1-methyl-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4i). 34 mg, yield 87%, White solid; m.p. 164-166 °C; $[\alpha]_D^{19} = +75.2$ (*c* = 0.26, CHCl₃); 68% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (ddd, *J* = 10.4, 7.2, 1.6 Hz, 3H), 7.23 (d, *J* = 8.7 Hz, 1H), 7.15–7.01 (m, 4H), 6.18 (d, *J* = 8.4 Hz, 1H), 4.71 (d, *J* = 8.4 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.22, 136.15, 130.47, 129.88, 128.25, 127.15, 125.73, 125.33, 121.48, 121.42, 118.97, 113.73, 111.56, 110.53, 54.77, 33.27; IR (neat) 3265, 2923, 1729, 1613, 1580, 1545, 1422, 1402, 1359, 1302, 1197, 1072, 1047, 1007 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₆H₁₃BrN₂O₃S: 391.9830 Found: 391.9811; Chiralpak IA column and IA guard column (7% EtOH:hexanes, 1.0 mL/min flow, λ = 254 nm); *major*-isomer *t*_r = 37.6 min and *minor*-isomer *t*_r = 42.2 min.

(*S*)-4-(5-Cyano-1-methyl-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4j). 15 mg, yield 45%, White solid; m.p. 227-229 °C; $[\alpha]_D^{19} = +115.6$ (*c* = 0.15, CHCl₃); 84% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.49 (dd, *J* = 8.6, 1.4 Hz, 1H), 7.45–7.35 (m, 2H), 7.29 (s, 1H), 7.17–7.07 (m, 2H), 7.02 (d, *J* = 7.7 Hz, 1H), 6.23 (d, *J* = 8.3 Hz, 1H), 4.87 (d, *J* = 8.3 Hz, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.23, 138.95, 131.79, 130.15, 128.06, 125.65, 125.42, 125.32, 124.67, 121.05, 120.09, 119.18, 112.24, 110.99, 103.51, 54.49, 33.38; IR (neat) 3188, 2221, 1615, 1581, 1485, 1453, 1433, 1381, 1363, 1281, 1164, 1098, 1015 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₇H₁₃N₃O₃S: 339.0678 Found: 339.0674; Chiralpak IA column and IA guard column (13% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer *t*_r = 35.8 min and *minor*-isomer *t*_r = 61.6 min.

(*S*)-4-(5-Methoxycarbonyl-1-methyl-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2dioxide (4k). 32 mg, yield 85%, White solid; m.p. 210-212 °C; $[\alpha]_D^{19} = +97.38$ (*c* = 0.41, CHCl₃); 88% ee; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 0.9 Hz, 1H), 7.96 (dd, *J* = 8.7, 1.4 Hz, 1H), 7.43–7.32 (m, 2H), 7.17 (s, 1H), 7.15–7.02 (m, 3H), 6.28 (d, *J* = 8.5 Hz, 1H), 4.91 (d, *J* = 8.6 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.68, 151.32, 139.77, 130.76, 129.85, 128.24, 125.28, 125.23, 124.11, 122.35, 121.65, 121.59, 118.98, 112.76, 109.71, 54.57, 52.01, 33.29; IR (neat) 3152, 2948, 2923, 2849, 1684, 1612, 1453, 1411, 1369, 1246, 1196, 1173, 1096, 1021 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₈H₁₆N₂O₅S: 372.0780 Found: 372.0764; Chiralpak IA column and IA guard column (20% EtOH:hexanes, 1.0 mL/min flow, λ = 254 nm); *major*-isomer *t*_r = 23.9 min and *minor*-isomer *t*_r = 27.8 min.

(*S*)-4-(1-Methyl-5-nitro-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4l). 32 mg, yield 88%, White solid; m.p. 227-229 °C; $[\alpha]_D^{19} = -169.3$ (*c* = 0.22, CHCl₃); 78% ee; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 2.1 Hz, 1H), 8.15 (dd, *J* = 9.1, 2.2 Hz, 1H), 7.45–7.35 (m, 2H), 7.27 (s, 1H), 7.16–7.09 (m, 2H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.28 (d, *J* = 7.9 Hz, 1H), 4.96 (d, *J* = 8.1 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.30, 141.99, 140.06, 132.64, 130.15, 128.08, 125.38, 125.07, 120.94, 119.21, 118.31, 116.19, 114.06, 110.12, 54.28, 33.61; IR (neat) 3253, 2922, 2852, 1728, 1578, 1548, 1516, 1483, 1450, 1363, 1331, 1196, 1090, 1044 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₆H₁₃N₃O₅S: 359.0576 Found: 359.0570; Chiralpak IA column and IA guard column (20% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer *t*_r = 21.9 min and *minor*-isomer *t*_r = 29.6 min.

(*S*)-4-(6-Chloro-1-methyl-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4m). 17 mg, yield 48%, White solid; m.p. 100-102 °C; $[\alpha]_D^{19} = +71.5$ (*c* = 0.12, CHCl₃); 78% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.31 (m, 2H), 7.16 (s, 1H), 7.11 (dd, *J* = 8.4, 6.2 Hz, 2H), 7.09–7.00 (m, 3H), 6.20 (d, *J* = 8.4 Hz, 1H), 4.70 (d, *J* = 8.4 Hz, 1H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.22, 137.97, 130.02, 129.80, 128.94, 128.29, 125.29, 123.93, 121.67, 121.01, 119.86, 118.90, 111.17, 110.14, 54.88, 33.16; IR (neat) 3270, 2923, 2853, 1716, 1580, 1477, 1451, 1416, 1360, 1329, 1256, 1192, 1165, 1099, 1067, 1010 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₆H₁₃ClN₂O₃S: 348.0335 Found: 348.0332; Chiralpak IA column and IA guard column (10% EtOH:hexanes, 1.0 mL/min flow, λ = 254 nm); *major*-isomer *t*_r = 27.4 min and *minor*-isomer *t*_r = 32.7 min.

(*S*)-4-(6-Fluoro-1-methyl-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4n). 29 mg, yield 88%, White solid; m.p. 182-184 °C; $[\alpha]_D^{19} = -11.2$ (*c* = 0.28, CHCl₃); 85% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.31 (m, 1H), 7.16–7.04 (m, 5H), 7.03 (dd, *J* = 9.5, 2.2 Hz, 1H), 6.83 (td, *J* = 9.3, 2.3 Hz, 1H), 6.20 (d, *J* = 8.3 Hz, 1H), 4.72 (d, *J* = 8.2 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.23 (d, *J*^{*l*} = 240.0 Hz), 159.04, 151.21, 137.68 (d, *J*³ = 11.9 Hz), 129.76, 128.35, 125.28, 121.86, 121.76, 119.92, 119.82, 118.86, 111.12, 109.12 (d, *J*² = 24.7 Hz), 96.53 (d, *J*² = 26.2 Hz), 54.97, 33.18; IR (neat) 3251, 2959, 2923, 1730, 1625, 1578, 1547, 1477, 1413, 1338, 1287, 1205, 1163, 1103, 1002 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₆H₁₃FN₂O₃S: 332.0631 Found: 332.0636; Chiralpak IA column and IA guard column (15% EtOH:hexanes, 1.0 mL/min flow, λ = 254 nm); *major*-isomer *t*_r = 16.7 min and *minor*-isomer *t*_r = 19.4 min.

(*S*)-4-(1,7-Dimethyl-1*H*-indol-3-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4o). 26 mg, yield 79%, White solid; m.p. 148-150 °C; $[\alpha]_D^{19} = +43.8$ (*c* = 0.37, CHCl₃); 88% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dtd, *J* = 8.2, 4.2, 2.2 Hz, 1H), 7.10 (d, *J* = 8.2 Hz, 1H), 7.08–7.02 (m, 4H), 6.98–6.88 (m, 2H), 6.19 (d, *J* = 8.4 Hz, 1H), 4.71 (d, *J* = 8.4 Hz, 1H), 4.07 (s, 3H), 2.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.22, 136.29, 130.94, 129.60, 128.41, 126.42, 125.35, 125.27, 122.20, 122.01, 120.53, 118.78, 116.88, 110.37, 55.08, 37.09, 19.72; IR (neat) 3256, 2925, 1605, 1580, 1480, 1450, 1406, 1372, 1253, 1195, 1165, 1095, 1011 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₇H₁₆N₂O₃S: 328.0882 Found: 328.0898; Chiralpak IA column and IA guard column (15% EtOH:hexanes, 1.0 mL/min flow, λ = 254 nm); *major*-isomer *t*_r = 18.9 min and *minor*-isomer *t*_r = 23.8 min.

(*S*)-4-(1-Methyl-1*H*-indol-3-yl)-6-methyl-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4p). 31 mg, yield 95%, White solid; m.p. 104-106 °C; $[\alpha]_D^{20} = +61.2$ (*c* = 0.36, CHCl₃); 91% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.34 (m, 1H), 7.29–7.24 (m, 2H), 7.15 (s, 1H), 7.13–7.04 (m, 2H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.85 (s, 1H), 6.17 (d, *J* = 8.4 Hz, 1H), 4.68 (d, *J* = 8.4 Hz, 1H), 3.82 (s, 3H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.13, 137.51, 135.03, 130.27, 129.29, 128.51, 125.42, 122.67, 121.59, 120.22, 118.92, 118.53, 111.02, 110.02, 55.11, 33.06, 20.77; IR (neat) 3267, 2921, 1550, 1486, 1411, 1376, 1333, 1280, 1257, 1203, 1173, 1106, 1064, 1014 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₇H₁₆N₂O₃S: 328.0882 Found: 328.0894; Chiralpak IA column and IA guard column (10% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer *t*_r = 25.6 min and *minor*-isomer *t*_r = 32.9 min.

(*S*)-4-(1-Methyl-1*H*-indol-3-yl)-6-methoxy-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4q). 34 mg, yield 99%, White solid; m.p. 167-169 °C; $[\alpha]_D^{20} = +71.5$ (*c* = 0.31, CHCl₃); 93% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.2 Hz, 1H), 7.30–7.24 (m, 2H), 7.15 (s, 1H), 7.11–7.05 (m, 1H), 7.03 (d, *J* = 9.0 Hz, 1H), 6.85 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.58–6.53 (m, 1H), 6.18 (d, *J* = 8.4 Hz, 1H), 4.67 (d, *J* = 8.4 Hz, 1H), 3.81 (s, 3H), 3.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.57, 145.03, 137.51, 129.27, 125.39, 122.91, 122.72, 120.27, 119.68, 118.88, 115.10, 113.12, 110.79, 110.03, 55.71, 55.21, 33.06; IR (neat) 3246, 2928, 2842, 1615, 1551, 1490, 1415, 1390, 1335, 1286, 1253, 1160, 1066, 1008 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₇H₁₆N₂O₄S: 344.0831 Found: 344.00798; Chiralpak IA column and IA guard column (15% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer *t*_r = 19.4 min and *minor*-isomer *t*_r = 22.8 min.

(*S*)-4-(1-Methyl-1*H*-indol-3-yl)-6-fluoro-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4r). 32 mg, yield 96%, White solid; m.p. 91-93 °C; $[\alpha]_D^{20} = +21.7$ (*c* = 0.38, CHCl₃); 84% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.3 Hz, 1H), 7.31–7.26 (m, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.19 (s, 1H), 7.12–7.06 (m, 2H), 7.06–6.99 (m, 1H), 6.77 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.18 (d, *J* = 8.4 Hz, 1H), 4.73 (d, *J* = 8.4 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.26 (d, *J*^{*l*} = 245.3 Hz), 147.06, 137.57, 129.40, 125.12, 123.86 (d, *J*³ = 7.2 Hz), 120.43, 120.3 (d, *J*³ = 8.3 Hz), 118.69, 116.77 (d, *J*² = 23.9 Hz), 114.89 (d, *J*² = 25.0 Hz), 110.19, 110.02, 55.10, 33.10; IR (neat) 3266, 2920, 1617, 1550, 1480, 1415, 1388, 1334, 1254, 1200, 1156, 1095, 1065 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₆H₁₃FN₂O₃S: 332.0631 Found: 332.0659; Chiralpak IA column and IA guard column (10% EtOH:hexanes, 1.0 mL/min flow, λ = 254 nm); *major*-isomer *t*_r = 20.1 min and *minor*-isomer *t*_r = 22.9 min.

(*S*)-4-(1-Methyl-1*H*-indol-3-yl)-6-chloro-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4s). 34 mg, yield 99%, White solid; m.p. 144-146 °C; $[\alpha]_D^{20} = +78.0$ (*c* = 0.38, CHCl₃); 84% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.3 Hz, 1H), 7.33–7.26 (m, 2H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.18 (s, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 7.07–7.01 (m, 2H), 6.17 (d, *J* = 8.4 Hz, 1H), 4.76 (d, *J* = 8.4 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.68, 137.56, 130.51, 129.79, 129.40, 128.19, 125.14, 123.81, 122.88, 120.47, 120.24, 118.65, 110.21, 109.95, 54.96, 33.13; IR (neat) 3270, 2930, 1550, 1471, 1414, 1388, 1334, 1293, 1273, 1252, 1192, 1162, 1108, 1064 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₆H₁₃ClN₂O₃S: 348.0335 Found: 348.0345; Chiralpak IB column and IB guard column (20% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer *t*_r = 14.2 min and *minor*-isomer *t*_r = 17.6 min.

(*S*)-4-(1-Methyl-1*H*-indol-3-yl)-6-bromo-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4t). 36 mg, yield 92%, White solid; m.p. 108-110 °C; $[\alpha]_D^{20} = +88.6$ (*c* = 0.19, CHCl₃); 83% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (ddd, *J* = 8.7, 2.4, 0.7 Hz, 1H), 7.38 (d, *J* = 8.3 Hz, 1H), 7.31–7.26 (m, 1H), 7.25–7.21 (m, 1H), 7.19 (dd, *J* = 2.3, 0.9 Hz, 1H), 7.17 (s, 1H), 7.12–7.06 (m, 1H), 6.98 (d, *J* = 8.8 Hz, 1H), 6.17 (d, *J* = 8.1 Hz, 1H), 4.77 (d, *J* = 8.2 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.25, 137.56, 132.71, 131.09, 129.38, 125.13, 124.19, 122.90, 120.58, 120.48, 118.64, 118.00, 110.21, 109.96, 54.87, 33.13; IR (neat) 3264, 2919, 1549, 1468, 1414, 1388, 1322, 1254, 1189, 1163, 1107, 1077, 1030, 1014 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₆H₁₃BrN₂O₃S: 391.9830 Found: 391.9814; Chiralpak IA column and IA guard column (7% EtOH:hexanes, 1.0 mL/min flow, λ = 254 nm); *major*-isomer *t*_r = 37.6 min.

(*S*)-4-(1-Methyl-1*H*-indol-3-yl)-7-methyl-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4u). 30 mg, yield 93%, White solid; m.p. 94-96 °C; $[\alpha]_D^{20} = +41.3$ (*c* = 0.36, CHCl₃); 89% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.3 Hz, 1H), 7.25 (td, *J* = 8.0, 3.1 Hz, 2H), 7.14 (s, 1H), 7.09–7.02 (m, 1H), 6.95–6.89 (m, 2H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.17 (d, *J* = 8.4 Hz, 1H), 4.68 (d, *J* = 8.5 Hz, 1H), 3.80 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.02, 140.14, 137.53, 129.36, 128.16, 126.19, 125.41, 122.67, 120.18, 118.97(two peaks overlapping), 118.89, 110.95, 110.02, 54.96, 33.04, 21.04; IR (neat) 3262, 2920, 1624, 1550, 1501, 1475, 1410, 1261, 1188, 1149, 1099, 1065, 1012 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₇H₁N₂O₃S: 328.0882 Found: 328.0880; Chiralpak IA column and IA guard column (15% EtOH:hexanes, 1.0 mL/min flow, λ = 254 nm); *major*-isomer *t*_r = 13.6 min and *minor*-isomer *t*_r = 18.2 min.

(*S*)-4-(1-Methyl-1*H*-indol-3-yl)-7-methoxy-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4v). 15 mg, yield 45%, White solid; m.p. 144-146 °C; $[\alpha]_D^{20} = +36.7$ (*c* = 0.22, CHCl₃); 80% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.3 Hz, 1H), 7.30–7.26 (m, 1H), 7.25–7.22 (m, 1H), 7.17 (s, 1H), 7.08 (dd, *J* = 11.0, 4.0 Hz, 1H), 6.95 (d, *J* = 8.1 Hz, 1H), 6.65–6.60 (m, 2H), 6.17 (d, *J* = 8.5 Hz, 1H), 4.66 (d, *J* = 8.6 Hz, 1H), 3.82 (s, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.37, 151.87, 137.55, 129.35, 129.08, 125.33, 122.69, 120.21, 119.00, 113.69, 112.18, 110.95, 110.03, 103.35, 55.64, 54.75, 33.06; IR (neat) 3255, 2920, 2850, 1734, 1622, 1575, 1502, 1466, 1416, 1357, 1269, 1235, 1200, 1187, 1152, 1088, 1029 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₇H₁₆N₂O₄S: 344.0831 Found: 344.0851; Chiralpak IA column and IA guard column (20% EtOH:hexanes, 1.0 mL/min flow, λ = 254 nm); *major*-isomer *t*_r = 13.5 min and *minor*-isomer *t*_r = 18.0 min.

(*S*)-4-(1-Methyl-1*H*-indol-3-yl)-6,8-dichloro-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4w). 35 mg, yield 91%, White solid; m.p. 101-103 °C; $[\alpha]_D^{24} = +64.4$ (*c* = 0.26, CHCl₃); 81% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.36 (m, 2H), 7.33–7.26 (m, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.20 (s, 1H), 7.15–7.08 (m, 1H), 6.95 (dd, *J* = 2.4, 1.0 Hz, 1H), 6.17 (d, *J* = 8.4 Hz, 1H), 4.90 (d, *J* = 8.5 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.89, 137.56, 130.20, 130.16, 129.45, 126.63, 125.25, 124.94, 124.71, 123.02, 120.62, 118.55, 110.29, 109.48, 55.20, 33.17; IR (neat) 3272, 2923, 1550, 1444, 1423, 1389, 1335, 1267, 1199, 1156, 1093, 1033, 1015 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₆H₁₂Cl₂N₂O₃S: 381.9946 Found: 381.9930; Chiralpak IB column and IB guard column (10% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer *t*_r = 32.1 min and *minor*-isomer *t*_r = 42.5 min.

(*S*)-4-(1-Methyl-1*H*-indol-3-yl)-6,8-dibromo-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4x). 44 mg, yield 94%, White solid; m.p. 113-115 °C; $[\alpha]_D^{22} = +59.4$ (*c* = 0.39, CHCl₃); 84% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 2.3, 0.8 Hz, 1H), 7.39 (d, *J* = 8.3 Hz, 1H), 7.32–7.26 (m, 1H), 7.26–7.22 (m, 1H), 7.19 (s, 1H), 7.12 (ddd, *J* = 15.1, 5.1, 0.9 Hz, 2H), 6.17 (d, *J* = 6.7 Hz, 1H), 4.92 (d, *J* = 7.1 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.34, 137.55, 135.83, 130.26, 129.46, 125.70, 124.97, 123.01, 120.62, 118.57, 117.85, 113.55, 110.28, 109.51, 55.12, 33.18; IR (neat) 3268, 2924, 1707, 1616, 1552, 1475, 1420, 1388, 1291, 1266, 1192, 1146, 1089, 1066 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₆H₁₂Br₂N₂O₃S: 469.8935 Found: 469.8945; Chiralpak AD-H column and AD-H guard column (10% EtOH:hexanes, 1.0 mL/min flow, λ = 220 nm); *major*-isomer *t*_r = 20.5 min and *minor*-isomer *t*_r = 25.4 min.

(*S*)-4-(1-Methyl-1*H*-indol-3-yl)-8-methoxy-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (4y). 33 mg, yield 96%, White solid; m.p. 169-171 °C; $[\alpha]_D^{25} = +64.2$ (*c* = 0.32, CHCl₃); 85% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.34 (m, 1H), 7.28–7.23 (m, 2H), 7.16 (s, 1H), 7.06 (td, *J* = 7.3, 0.9 Hz, 1H), 6.97 (t, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 7.6 Hz, 1H), 6.66–6.58 (m, 1H), 6.22 (d, *J* = 8.5 Hz, 1H), 4.75 (d, *J* = 8.5 Hz, 1H), 3.91 (s, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.77, 140.92, 137.48, 129.36, 125.36, 124.72, 123.04, 122.66, 120.19, 119.53, 118.93, 111.73, 110.83, 110.03, 56.25, 55.25, 33.06; IR (neat) 3299, 3237, 2932, 1614, 1581, 1550, 1475, 1403, 1354, 1272, 1200, 1151, 1079, 1009 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₇H₁₆N₂O₄S: 344.0831 Found: 344.0831; Chiralpak IA column and IA guard column (20% EtOH:hexanes, 1.0 mL/min flow, λ = 254 nm); *major*-isomer *t*_r = 16.2 min and *minor*-isomer *t*_r = 20.5 min.

Enantioselective Friedel–Crafts Reaction of *N*-Benzylpyrrole 5 with Cyclic *N*-Sulfimine 2a.

To a solution of cyclic *N*-sulfimine **2** (0.1 mmol) in toluene (0.75 mL) was added catalyst **3d** (0.01 mmol). The solution was stirred at -20 °C for 10 min, and then *N*-benzylpyrrole **5** (0.15 mmol) was added in one portion. The reaction mixture was stirred at -20 °C for 72 h. Then, the resulting mixture was diluted with water and extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried over anhydrous MgSO₄, and concentrated in vacuo. The crude residue was purified by flash column chromatography with EtOAc/hexanes as eluent to afford desired product **6**. The enantiomeric excess was determined using HPLC analysis.

(*S*)-4-(1-Benzyl-1*H*-pyrrol-2-yl)-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (6). 19 mg, yield 57%, Colorless gum; $[\alpha]_D^{22} = +91.9$ (*c* = 0.24, CHCl₃); 74% ee; ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.27 (m, 4H), 7.16–7.01 (m, 5H), 6.85 (dd, *J* = 2.6, 1.8 Hz, 1H), 6.24–6.15 (m, 1H), 6.10 (dd, *J* = 3.6, 1.6 Hz, 1H), 5.94 (s, 1H), 5.13 (q, *J* = 16.2 Hz, 2H), 4.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.43, 137.32, 129.94, 129.20, 128.33, 128.20, 127.64, 126.46, 125.09, 124.80, 120.42, 118.90, 111.83, 108.00, 77.35, 77.03, 76.72, 54.47, 51.0; IR (neat) 3274, 2924, 2853, 1481, 1451, 1417, 1362, 1286, 1197, 1166, 1099 cm⁻¹; HRMS (EI) m/z calcd for [M]⁺ C₁₈H₁₆N₂O₃S: 340.0882 Found: 340.0874; Chiralpak IB column and IB guard column (3% EtOH:hexanes, 1.0 mL/min flow, $\lambda = 254$ nm); *major*-isomer *t*_r = 21.6 min and *minor*-isomer *t*_r = 20.7 min.

S16

S24

S31

Area Percent Report

Peak	RetTime	Туре	Width	A:	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	%
1	17.884	BB	0.8826	908	.84515	15.	89358	50.1630
2	21.461	BB		902	.94049	14.	05030	49.8370
Total	ls :			1811	.78564	29.	94388	

Area Percent Report

Peak RetTime # [min]	Туре	Width [min]	A1 mAU	rea *s	Heic [mAU	jht]	Area %
1 17.777 2 20.991	MM MM MM	0.8549 0.8929	2719. 122.	33398 66618	53.0	1590 8965	95.6838 4.3162
Totals :			2842.	00017	55.3	80556	

S42

Peak RetTime Ty	ype Width	Area	Height	Area
# [min]	[min]	mAU *s	[mAU]	%
1 18.068 BH	B 0.8642	966.98730	17.74891	95.1675
2 22.520 MM	M 0.9601	49.10224	8.52400e-1	4.8325
Totals :		1016.08954	18.60131	

S43

racemic

chiral

Totals :

Area Percent Report

1433.08521

24.68648

Peak RetTime	Туре	Width	A:	rea	Heig	ght	Area
# [min]		[min]	mAU	*s	[mAU]	%
1 20.064	MM	0.8928	1643	.07434	30.0	57374	95.7267
2 26.841	MM		73	.34764	1.1	18809	4.2733
Totals :			1716	42198	31.8	36183	

Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Height [mAU]	Area %
	10 204		0.0765	21.04	01440	20 22226	[50 1611
2	21.981	BB	1.0341	2194	.92432	32.57351	49.8389
Total	ls :			4373	.93872	71.90577	

chiral

Peak #	RetTime [min]	Туре	Width [min]	A1 mAU	rea *s	Height [mAU]	Area %
 1 2	18.366 22.135	BB BB	0.8609	2233. 149.	20117	40.64035 2.24146	93.7365 6.2635
Total	s:			2382.	42464	42.88182	

racemic

Totals :

Area Percent Report

1638.37451

25.78321

Peak	RetTime	Туре	Width	A:	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	%
1	20.151	BB	0.9139	3666	.11230	62.	94955	96.7582
2	24.614	BB	0.8167	122	.82885	1.	78002	3.2418
Total	s:			3788	.94115	64.	72957	

racemic

chiral

Peak i	RetTime	Туре	Width	A1	rea	Height	Area
#	[min]		[min]	mAU	*s	[mAU]	%
1	16.869	BB	1.0232	2349	05151	35.52917	98.3564
2	27.664	MM	1.2056	39		5.42662e-1	1.6436
Total	s:			2388.	30629	36.07183	

racemic

 Peak RetTime Type
 Width
 Area
 Height
 Area

 #
 [min]
 [min]
 mAU
 *s
 [mAU
 \$

 --- ---- ---- ----- ----- ----- \$

 1
 24.102
 MM
 1.2790
 1072.89246
 13.98033
 50.5144

 2
 31.201
 MM
 1.4162
 1051.04004
 12.36967
 49.4856

 Totals :
 2123.93250
 26.35000
 26.35000
 26.35000

chiral

Peak	RetTime	Туре	Width	Area		Height		Area	
#	[min]		[min]	mAU *s		[mAU]		%	
1	26.618	BB	0.9915	1923	.68835	29.5	8697	50.2933	
2	45.547	BB	1.3389	1901	.25488	19.9	2603	49.7067	
Total	ls :			3824	.94324	49.5	51300		

Peak RetTime Typ	e Width	Area	Height	Area
# [min]	[min]	mAU *s	[mAU]	%
1 26.633 MM	1.0984	2008.81140	30.48024	94.6189
2 46.010 MM	1.5421	114.24424	1.23476	5.3811
Totals :		2123.05564	31.71501	

racemic

Peak #	RetTime [min]	Type	Width [min]	Area mAU *s		Heig [mAU	iht 1	Area %	
						·			
1 2	38.948 42.564	BB BB	1.0664 1.1741	2760. 2694.	70435 13135	38.9 33.6	91726 55879	50.6102 49.3898	
Total	ls :			5454.	83569	72.5	57605		

Peak Ret # [r	tTime nin]	Туре	Width [min]	A1 mAU	rea *s	Heig [mAU	jht]	Area %
		-						
1 3	7.606	BB	1.0714	2614.	87378	37.1	5883	83.8056
2 42	2.194	BB	1.0491	505.	29242	6.4	3131	16.1944
Totals				3120.	16620	43.5	59014	

racemic

Peak #	RetTime [min]	Туре	Width [min]	A mAU	rea *s	Hei [mAU	ght]	Area %
1	35.248	MM	1.5029	650	.46289	7.3	21326	49.3614
2	59.000	MM	2.3115	667	.29218	4.	81134	50.6386
Total	ls :			1317	.75507	12.	02461	

Peak RetTime # [min]	Туре	Width [min]	A: mAU	rea *s	Heig [mAU	ght]	Area %
1 35.841 2 61.565	 MM MM	1.5221 2.5834	2015 174	.92847 .67722	22.0	7368 2690	92.0261 7.9739
Totals :			2190	.60568	23.2	20058	

chiral

Peak RetTime # [min]	Туре	Width [min]	A mAU	rea *s	Heig [mAU	ght]	Area %
1 23.898	MM	1.3738	6771	.12402	82.1	L4424	93.2814
2 27.795	MM	1.5733	487	.69339	5.1	L6628	6.7186
Totals :			7258	.81741	87.3	31052	

racemic

chiral

Area Percent Report

Peak RetT	ime Type n]	Width [min]	Are mAU	*s	Heig [mAU	nt]	Area %
1 21.	909 MM	1.0750	6578.3	81787	101.9	8546	89.0282
2 29.	590 BB	1.1417	810.7	71136	9.7	0799	10.9718

```
Totals :
```

7389.02924 111.69345

racemic

Peak	RetTime	Туре	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU		*
1 2	28.581 33.952	MM MM	1.0459 1.4271	244 237	.74998 .26993	3. 2.	90019 77093	50.7759 49.2241
Total	ls :			482	.01991	6.	67112	

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	mAU *s	[mAU]	%
1 27.395 MM	1.0101	1537.64856	25.37234	89.0850
2 32.719 BB	0.9300	188.39717	2.42807	10.9150
Totals :		1726.04573	27.80041	

racemic

Totals :

chiral

Area Percent Report

1865.09845

34.63132

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min] 1	mAU *s	[mAU]	%
1 16.668 MM	0.8317	1998.96997	40.05807	92.4165
2 19.399 MM		164.03189	3.02956	7.5835
Totals :		2163.00186	43.08763	

racemic

Peak #	RetTime [min]	Type	Width [min]	Ar mAU	ea *s	Heig [mAU	ght]	Area %
1 2	18.779 23.515	BB BB	0.8046	411. 406.	64883 53339	7.8	87951 5131	50.3126 49.6874
Total	ls :			818.	18222	14.9	93082	

chiral

Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Heig [mAU	ght]	Area %
1	18.896	MM	0.8823	1707	.21240	32.2	25107	93.9893
2	23.806	MM	0.9403	109	.17730	1.5	93517	6.0107
Total	s:			1816	.38970	34.	18623	

chiral

Totals :

		-100						
#	[min]		[min]	mAU	*s	[mAU]	8
1 2	25.614 32.862	MM MM	0.9378 0.9970	2255 105	.69849 .66940	40.0 1.7	9018 6648	95.5251 4.4749
Total	.s :			2361	.36789	41.8	5666	

2076.99731

34.28676

racemic

chiral

Peak #	RetTime [min]	Туре	Width [min]	A mAU	rea *s	Hei [mAU	ght]	Area %
1	19.436	BB	0.5234	2023	.01636	59.	06198	96.5158
2	22.813	BB	0.5720	73	.03020	1.	91959	3.4842
Total	s :			2096	.04656	60.	98158	

racemic

Fear I	Retrime	Type	Widen		rea	Height		Area	
#	[min]		[min]	mAU	*s	MAU	1	8	
						·			
1	19.118	MM	0.5730	1544	.48645	44.	92115	49.9216	
2	21.392	MM	0.6429	1549	.33569	40.	16604	50.0784	
Totals :				3093	.82214	85.	08719		

chiral

_____ Area Percent Report _____ _____

Peak #	RetTime [min]	туре	Width [min]	A: mAU	rea *s	Hei [mAU	ght]	Area %
1	20.051	BB	0.5694	6470	.82861	172.	22542	92.1623
2	22.869	BB	0.6158	550	.29614	13.	52716	7.8377
Total	ls :			7021	.12476	185.	75258	

```
S59
```

1549.34

19-118 392%

20

15

25

n

Area Percent Report

Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Heig [mAU	ght]	Area %
1 2	14.186 17.839	BB BB	0.7737 0.7871	893 895	.74347	17.7	79776 50254	49.9531 50.0469
Total	ls :			1789	.16669	35.4	0031	

chiral

Peak RetTime Type	Width Area	Height	Area
# [min]	[min] mAU *s	[mAU]	%
1 14.183 BB	0.7836 4714.30420	94.39548	91.8068
2 17.649 BB	0.7552 420.72095	8.31007	8.1932
Totals :	5135.02515	102.70555	

20 -

15 -

10 -

5-

0

20

Peak RetTime		Type	Width	Area		Height		Area	
#	[min]		[min]	mAU	*s	[mAU]	8	
1	30.865	MM	0.9173	1931	.62134	35.	09717	91.3006	
2	37.633	MM	1.1013	184	.05180	2.	78536	8.6994	
Total	s :			2115	.67314	37.	88253		

10

69. Ange. 184.052

40

35

30

Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Hei [mAU	ght]	Area %
1	13.649	BB	0.3776	846	.85669	34.	03638	94.4874
2	18.174	MM	0.5545	49	.40727	1.	48498	5.5126
Total	ls :			896	.26396	35.	52136	

racemic

chiral

Totals :

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
1	31.613	MM	2.2946	3143.87939	22.83542	49.2606
2	40.292	MM	2.1535	3238.26245	25.06144	50.7394

Totals : 6382.14185 47.89686

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	mAU *s	[mAU]	%
1 32.125 MM	2.5824	3063.42969	19.77143	90.6918
2 42.510 MM	2.5460	314.41663	2.05825	9.3082
Totals :		3377.84631	21.82969	

chiral

Area Percent Report

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	mAU *s	[mAU]	%
1 16.236 MM	0.5560	2861.60376	85.77186	92.3053
2 20.543 MM	0.7355	238.54846	5.40554	7.6947
Totals :		3100.15222	91,17740	

Peak #	RetTime [min]	Туре	Width [min]	A mAU	rea *s	Heig [mAU	ght]	Area %
1	22.096	вв	0.6892	507	.46777	10.0	60673	50.3242
2	26.086	BB	0.7234	500	.93005	10.2	24447	49.6758
Total	ls :			1008	.39783	20.8	35120	

chiral

Peak #	RetTime [min]	туре	Width [min]	Area mAU *s		Height [mAU]		Area %
1	21.556	MM	0.8204	458	.40491	9.	31218	86.9741
2	25.660	MM	0.7926	68.	.65408	1.	44371	13.0259
Total	ls :			527	.05898	10.	/5589	