Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Material for

Roles of Reaction Kinetics of CO₂ on a PrBaCo₂O_{5.5+δ} Surfaces

Xing Xu, Erik Enriquez, Shanyong Bao, Zach Harrell, Brennan Mace, Chonglin Chen*

Department of Physics & Astronomy, the University of Texas at San Antonio, TX, 78249

Myung-Hwan Whangbo Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204,

USA

The splitting of carbon dioxide is a challenging topic. Many efforts have been performed to achieve the reduction and conversion of the CO_2 . One of the direct conversion techniques is the splitting of CO_2 into CO and O2. Various materials are explored to achieve this goal. For comparison, some novel results from the previous research are listed in Table S1

Technique		Material	Reactant	Temperature(°C)	Ea(eV)
Symmetric cell		PrBCO/YSZ/PBCO	CO2	700~900	1.1, k _{chem}
(This work)					
Solid	electrolysis	LSCM/YSZ, LSCM/GDC ¹	CO2/CO	900	NA
cell					
Solid	electrolysis	(La,Sr)(Cr,Mn)O3/GDC ²	CO2/CO	900	NA
cell					
Solid	electrolysis	Cu/CGO ³	CO2/CO=1:1	750	NA
cell					
Solid	electrolysis	Ni/YSZ ⁴	CO2/CO=1:1 et	850	NA
cell			al		
Solid	electrolysis	La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3-δ} -	CO2/H2O	700-850	0.7, R _{total}
cell		Gdn 1 Cen 902-8			
		(LSCF6428-GDC) ⁵			
Solid	electrolysis	La0.2Sr0.8TiO3 ⁶	CO2	700	NA
cell					
Thermalchemical		La1xCaxMnO3 (LCM) ⁷	H2O, CO2	1300	NA
Two	step	Ce1-xZrxO2 ⁸	CO2	800–1050	NA
thermalchemical					
Two	step	LaFeO3/IrOx ⁹	CO2	900-1100	2.27,
thermalchemical					Resistance

Table S1 the current status of the CO2 splitting techniques and materials

Our results indicate that the operation temperature can be as low as around 700~900°C with small activation energy 1.1eV for surface exchange coefficient k_{chem} . This is much lower than many other materials for the pure CO₂ reduction, such as 2.27eV activation energy for LaFeO3/IrOx and with high operation temperature. Although LSCF6428-GDC⁵ shows lower 0.7eV activation energy than PBCO, it required the reaction in the CO₂/H₂O mixture. For the pure CO₂ reduction, the result of this context is most advanced.

The EIS measurement in CO_2 has low oxygen partial pressure and the PrBCO electrodes will lose oxygen content in heating process.¹⁰ The oxygen content changes because of the low oxygen partial pressure in the CO_2 ambient at high temperature. We note that the value of x in $PBCo_2O_{5.5+x}$ is proportional to the log scale of the oxygen partial pressure,¹¹ and that at a lower oxygen partial pressure the oxygen content of a perovskite oxide decreases.¹²

In the as-grown PBCO thin film electrode, large number of oxygen vacancies exist and the oxygen stoichiometry deviate from fully oxidized state. When the PBCO electrode is heating up in the carbon dioxide ambient, the oxygen vacancies in the lattice are activated and the stoichiometry is changed due to the oxygen ions and species provided by the splitting of the carbon dioxide on the electrode surface. The oxygen stoichiometry strongly alters the chemical catalysis performance of the PBCO electrode. In the main part of this research, the latter two cycles show same shapes in the surface resistance Rs, surface capacitance Cs, interface resistance Ri and the surface exchange coefficient k_{chem} . In Fig. S1, the fitting result of the 1st cycle after the installation of the symmetric cell are demonstrated. The diagram of surface resistance Rs, the value increases with the temperature monotonically and shows a slope transition near 1073K. Similar transitions exist in surface capacitance Cs, electrode electrolyte interface resistance Ri and the surface exchange coefficient. Meanwhile, this kind of transitions doesn't exist in the following cycles which the oxygen vacancies are rebalanced in the carbon dioxide ambient. This transition behavior can be described that the equilibrium between the oxygen partial pressure provided by the splitting of carbon dioxide and that inside the PBCO electrode. In the 1st cycle, PBCO electrode is heat up from room

temperature to 973K and the oxygen provided by carbon dioxide is limited due to the high reaction activation energy. Thus the as-grown fully oxidized PBCO lost oxygen to the ambient till to the equilibrium oxygen stoichiometry. This process only exists in the first cycle and demonstrates unique shape comparing to the results of the other two processes. Then heat up to higher temperature, PBCO electrode can obtain the oxygen in the first cycle as in the other two cycles.

Figure S1. The fitting results of the cycle 1. The dash line is the 800°C and where a transition happens.

Reference

1. Yue, X.; Irvine, J. T. S., Alternative Cathode Material for CO2 Reduction by High Temperature Solid Oxide Electrolysis Cells. *Journal of the Electrochemical Society* **2012**, *159* (8), F442-F448.

2. Yue, X.; Irvine, J. T. S., (La,Sr)(Cr,Mn)O-3/GDC cathode for high temperature steam electrolysis and steam-carbon dioxide co-electrolysis. *Solid State Ionics* **2012**, *225*, 131-135.

3. Cheng, C. Y.; Kelsall, G. H.; Kleiminger, L., Reduction of CO2 to CO at Cu-ceria-gadolinia (CGO) cathode in solid oxide electrolyser. *Journal of Applied Electrochemistry* **2013**, *43* (11), 1131-1144.

4. Graves, C.; Ebbesen, S. D.; Mogensen, M., Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability. *Solid State Ionics* **2011**, *192* (1), 398-403.

5. Im, H. N.; Jeon, S. Y.; Lim, D. K.; Singh, B.; Choi, M.; Yoo, Y. S.; Song, S. J., Steam/CO2 Co-

Electrolysis Performance of Reversible Solid Oxide Cell with La0.6Sr0.4Co0.2Fe0.8O3-delta-Gd0.1Ce0.9O2-delta Oxygen Electrode. *Journal of the Electrochemical Society* **2015**, *162* (1), F54-F59.

6. Li, S.; Li, Y.; Gan, Y.; Xie, K.; Meng, G., Electrolysis of H2O and CO2 in an oxygen-ion conducting solid oxide electrolyzer with a La0.2Sr0.8TiO3+delta composite cathode. *Journal of Power Sources* **2012**, *218*, 244-249.

7. Dey, S.; Naidu, B. S.; Govindaraj, A.; Rao, C. N. R., Noteworthy performance of La1-xCaxMnO3 perovskites in generating H-2 and CO by the thermochemical splitting of H2O and CO2. *Physical Chemistry Chemical Physics* **2015**, *17* (1), 122-125.

8. Abanades, S.; Le Gal, A., CO2 splitting by thermo-chemical looping based on ZrxCe1-xO2 oxygen carriers for synthetic fuel generation. *Fuel* **2012**, *102*, 180-186.

9. Jiang, Q. Q.; Chen, Z. P.; Tong, J. H.; Yang, M.; Jiang, Z. X.; Li, C., Catalytic Function of IrOx in the Two-Step Thermochemical CO2-Splitting Reaction at High Temperatures. *Acs Catalysis* **2016**, *6* (2), 1172-1180.

10. Kim, G.; Wang, S.; Jacobson, A. J.; Reimus, L.; Brodersen, P.; Mims, C. A., Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. *Journal of Materials Chemistry* **2007**, *17* (24), 2500.

11. Cox-Galhotra, R. A.; Huq, A.; Hodges, J. P.; Yu, C. F.; Wang, X. Q.; Gong, W. Q.; Jacobson, A. J.; McIntosh, S., An in-situ neutron diffraction study of the crystal structure of PrBaCo2O5 (+) (delta) at high temperature and controlled oxygen partial pressure. *Solid State Ionics* **2013**, *249*, 34-40.

12. Taskin, A. A.; Lavrov, A. N.; Ando, Y., Achieving fast oxygen diffusion in perovskites by cation ordering. *Applied Physics Letters* **2005**, *86* (9).