Electronic Supporting Information

Sn–H Bond Additions to Asymmetric Trigonal Phosphinidene-Bridged Dimolybdenum Complexes

M. Angeles Alvarez, Inmaculada Amor, M. Esther García, Daniel García-Vivó,* Miguel A. Ruiz,* and Jaime Suárez

Departamento de Química Orgánica e Inorgánica / IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain.

Table of Contents

* DFT-optimized geometries for complexes 1 to 3 and some derivatives	pag. S3
* Table S1: Selected geometrical parameters for compounds 2 and 3	pag. S6
* Table S2. Molecular orbitals of syn-2	pag. S7
* Table S3. Molecular orbitals of <i>syn-2</i> R	pag. S9
* Table S4. Molecular orbitals of <i>anti-2</i>	pag. S11
* Table S5. Molecular orbitals of <i>anti-2</i> R	pag. S14
* Table S6. Molecular orbitals of syn-3	pag. S16
* Table S7. Molecular orbitals of <i>anti-3</i>	pag. S19
* Table S8. C-O stretching frequencies for compounds 2 and 3.	pag. S22
* Table S9. Gibbs Free Energies of DFT-computed species	pag. S22
* Rotational energy profile for compound <i>anti-2</i>	pag. S23
* Complete reference 42	pag. S23

DFT-optimized geometries for complexes 1 to 3 and some derivatives, with ^tBu groups (except the C^1 atoms) and most H atoms omitted for clarity.

Optimized geometry of *anti-2*

Optimized geometry of anti-2R

Optimized geometry of syn-3

Optimized geometry of anti-3

Optimized geometry of M1-mod

Optimized geometry of 5-mod

Optimized geometry of P-mod

Optimized geometry of 7-mod

Parameter	syn-2	syn-2R	anti-2	anti-2R	syn-3	anti-3
Mo1 – P3	2.292	2.301	2.287	2.314	2.300	2.285
Mo2 – P3	2.581	2.590	2.592	2.600	2.603	2.609
P3 – H/C	1.436	1.426	1.429	1.419	1.886	1.875
Mo1 – C6	1.966	1.970	1.964	1.966	1.970	1.965
Mo1 – C7	1.970	1.965	1.976	1.961	1.957	1.970
Mo1 - P3 - Mo2	144.1	146.4	139.9	144.4	138.4	134.1
Mo1 – P3 – H/C	111.1	108.6	117.2	111.7	116.2	119.6
Mo2 - P3 - H/C	102.5	104.8	102.6	103.9	105.3	105.5
C6 – Mo1 – C7	82.8	82.9	82.1	82.5	80.8	82.6
C6 – Mo1 – P3	90.5	98.4	90.8	89.0	95.7	91.5
C7 – Mo1 – P3	98.8	93.9	90.9	87.9	93.7	89.9

Table S1: Selected geometrical parameters for compounds $\mathbf{2}$ and $\mathbf{3}$ (distances in Å, angles in deg.)

Contributions (%): Mo1 49, Mo2 19, P3 3, H76 2, CO's 17, Ar 6, Other 5

Contributions (%): Mo1 42, Mo2 24, P3 4, H8 2, CO's 14, Ar 8, Other 6

S11

MO 138

-4.88

 $LP_{Mo2} + \pi_{Mo-CO}$

Contributions (%): Mo1 42, Mo2 27, P3 2, H8 4, CO's 12, Ar 9, Other 5

Contributions (%): Mo1 28, Mo2 7, P3 41, H8 0, CO's 5, Ar 5, Other 14

Table S5: N	Allocular orbitals of <i>anti-2</i> R .
ОМ	
Energy (eV)	Projection
Assignment	5
LUMO 141	XXX - 7
-1.52	
$\pi^*{}_{\mathrm{MoP}}$	
	Contributions (%): Mo1 28, Mo2 5, P3 32, H8 0, CO's 10, Ar 14, Other 12
HOMO 140	
-4.56	H Contraction
$LP_{Mo2} + \pi_{MoP}$	The the
	Contributions (%): Mo1 20, Mo2 39, P3 7, H8 0, CO's 4, Ar 18, Other 10
MO 139	
-4.64	the second second
$\pi_{Mo\text{-}CO} + LP_{Mo2}$	
	Contributions (%): Mo1 55, Mo2 17, P3 2, H8 3, CO's 14, Ar 4, Other 5
MO 138	
-4.80	
LP_{Mo2} + π_{Mo-CO}	The states
	-

Contributions (%): Mo1 19, Mo2 46, P3 2, Me 0, CO's 6, Ar 20, Other 8

MO 142 -4.91 $LP_{Mo2}\!\!+\pi_{Mo\text{-}CO}$ Contributions (%): Mo1 34, Mo2 30, P3 4, Me 5, CO's 11, Ar 12, Other 5 MO 141 -5.01 $\pi_{\text{Mo-CO}}$ Contributions (%): Mo1 59, Mo2 1, P3 2, Me 0, CO's 29, Ar 1, Other 8 MO 140 -5.34 π_{MoP} Contributions (%): Mo1 36, Mo2 1, P3 38, Me 2, CO's 6, Ar 3, Other 13 MO 139 -6.44 $\sigma_{MoP} + MoCp$

Contributions (%): Mo1 13, Mo2 6, P3 27, Me 4, CO's 2, Ar 2, Other 46

Table S7: Me	olecular orbitals of <i>anti-3</i> .
OM	
Energy (eV)	Projection
Assignment	
LUMO 145	
-1.58	
$\pi^*{}_{MOP}$	
	Contributions (%): Mo1 29, Mo2 4, P3 34, Me 2, CO's 12, Ar 6, Other 13
HOMO 144	
-4.55	
$LP_{Mo2} + LP_{Mo1}$	
	Contributions (%): Mo1 19, Mo2 55, P3 1, Me 1, CO's 5, Ar 12, Other 6
MO 143	
-4.75	
$Mo-Ar + LP_{Mo1}$	

Contributions (%): Mo1 24, Mo2 3, P3 1, Me 0, CO's 7, Ar 16, Other 8

MO 136

-7.19

 $\sigma_{MoP} + MoCp$

Contributions (%): Mo1 18, Mo2 12, P3 18, Me 2, CO's 1, Ar 5, Other 43

	syn-2	syn-2R	anti-2	anti-2R	syn-3	anti-3
V _{CO,symm} .	1999 (100)	1999 (100)	2023 (100)	2015 (100)	1997 (100)	2015 (100)
V _{CO,asymm} .	1944 (87)	1946 (75)	1970 (58)	1965 (61)	1938 (81)	1962 (61)

Table S8: DFT/B3LYP-calculated stretching wavenumbers $v(\text{cm}^{-1})$ and relative intensities for *syn* and *anti* isomers of compounds **2** and **3**.

Table S9: DFT/B3LYP-calculated relative Gibbs Free Energies (Kcal/mol) in the gas phase.

	syn-2	syn-2R	anti-2	anti-2R	syn-3	anti-3	5-mod	P-mod	7-mod	M1-mod
ΔG_{298K}	1.9	0	3.9	3.0	1.2	0	-2.3^{a}	6.5^{b}	-9.6 ^c	28.2^{d}

^{*a*} Relative to *syn*-2**R** + HSnMe₃. ^{*b*} Relative to *anti*-3 + HSnMe₃. ^{*c*} Calculated for the reaction *anti*-3 + HSnMe₃ \rightarrow 7-mod + H₂. ^{*d*} Relative to 1 + HSnMe₃.

Energy profile for the rotation scan resulting from increasing the dihedral angle H8-P3-Mo1-C7 in *anti-2* by 45° steps.

Dotation	Energy				
Kotation	(kcal/mol)				
0 (anti-2)	0.0				
45	6.1				
90	8.5				
135	0.3				
180 (~ <i>syn</i> -2 R)	-4.8				
225	0.3				
270	6.7				
315	2.5				
360 (~ <i>anti</i> -2 R)	-1.7				
405	2.8				

Reference 42. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, Revision B.02*, Gaussian, Inc., Wallingford, CT, 2004.