Synthesis and Evaluation of the Antitumor Activity of Highly Functionalised Pyridin-2-ones and Pyrimidin-4-ones

Xuan-Xuan Du^{a,‡}, Rong Huang^{a,‡}, Chang-Long Yang^a, Jun Lin^{a,*} and Sheng-Jiao Yan^{a,*}

Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

Table of Contents

General Information	3
General Procedure for the Preparation Pyridin-2-ones 3	3
Spectroscopic Data of Pyridin-2-ones 3	4
General Procedure for the Preparation pyrimidin-4-ones 4	15
Spectroscopic Data of pyrimidin-4-ones 4	15
X-ray Structure and Data of 3f	18
X-ray Structure and Data of 4f	23
¹ H NMR and ¹³ C NMR Spectra of compounds 3~4	26
Figure 1 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3a	26
Figure 2. ¹³ C NMR (150MHz, DMSO- d_6) spectra of compound 3a	27
Figure 3. ¹ HNMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3b	28
Figure 4. ¹³ CNMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3b	29
Figure 5 . ¹ HNMR (500 MHz, DMSO- d_6) spectra of compound 3 c	30
Figure 6. ¹³ CNMR (125 MHz, DMSO- d_6) spectra of compound 3c	31
Figure 7 . ¹ HNMR (600 MHz, DMSO- d_6) spectra of compound 3d	32
Figure 8. ¹³ CNMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3d	33
Figure 9 . ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3e	34
Figure 10. ¹³ C NMR (125 MHz, DMSO- d_{6}) spectra of compound 3e	35
Figure 11 . ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3f	36
Figure 12. ¹³ C NMR (125MHz, DMSO- <i>d</i> ₆) spectra of compound 3f	37
Figure 13. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3g	38
Figure 14. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 3g	39
Figure 15. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3h	40
Figure 16. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3h	41
Figure 17. ¹⁹ F (467 MHz, DMSO- d_6) spectra of compound 3h	42
Figure 18. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3i	43
Figure 19. ¹³ C NMR (125MHz, DMSO- <i>d</i> ₆) spectra of compound 3i	44
Figure 20. ¹ HNMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3j	45
Figure 21. ¹³ CNMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3j	46
Figure 22. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3k	47
Figure 23. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3k	48

Figure 24 . ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 31 49
Figure 25. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of	compound 31 50
Figure 26 . ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 3m 51
Figure 27. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of	compound 3m 52
Figure 28 . ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 3n 53
Figure 29. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of	compound 3n 54
Figure 30 . ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 30 55
Figure 31. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of	compound 30 56
Figure 32 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of	compound 3p 57
Figure 33. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of	compound 3p 58
Figure 34 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of	compound 3q 59
Figure 35 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of	compound 3q 60
Figure 36 . ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 3r 61
Figure 37. ¹³ CNMR (125 MHz, DMSO- d_6) spectra of	compound 3r 62
Figure 38 . ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 3s 63
Figure 39. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of	compound 3s 64
Figure 40 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of	compound 3t 65
Figure 41 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of	compound 3t
Figure 42 . ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 3u 67
Figure 43 . ¹³ C NMR (125 MHz, DMSO- d_6) spectra of	compound 3u
Figure 44 . ¹ H NMR (500 MHz, CDCl ₃) spectra of con	1pound 3v 69
Figure 45. ¹³ C NMR (125 MHz, CDCl ₃) spectra of con	npound 3v 70
Figure 46. ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 3w 71
Figure 47. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of	compound 3w 72
Figure 48. ¹ H NMR (600 MHz, DMSO- d_6) spectra of	compound 3x 73
Figure 49 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of	compound 3x 74
Figure 50. ¹ H NMR (600 MHz, DMSO- d_6) spectra of	compound 3y 75
Figure 51 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of	compound 3y 76
Figure 52. ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 4a 77
Figure 53. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of	compound 4a 78
Figure 54. ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 4b 79
Figure 55. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of	compound 4b 80
Figure 56. ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 4c 81
Figure 57. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of	compound 4c
Figure 58. ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 4d 83
Figure 59. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of	compound 4d
Figure 60. ¹ H NMR (500 MHz, DMSO- d_6) spectra of	compound 4e 85
Figure 61. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of	compound 4e
Figure 62. ¹ H NMR (600 MHz, DMSO- d_6) spectra of	compound 4f 87
Figure 63. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of	compound 4f

General Information

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX500 (¹H: 500 MHz, ¹³C: 125 MHz) or DRX600 (¹H: 600 MHz, ¹³C: 150MHz), chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, deuterated DMSO-*d*₆ or CDCl₃ was used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Compounds 1 were prepared according to the literature¹ and compounds 2 were prepared according to the literature².

General Procedure for the Preparation Pyridin-2-ones 3

N,*N*'-disubstituted 1,1-ene diamines (DEDAMs) **1** (1.0 mmol), mercaptals **2** (1.0 mmol), Cs₂CO₃ (2.0 mmol), acetonitrile(15.0 mL) were added into a 25 mL round-bottom flask, mix at reflux for about 8 h and monitored by thin layer chromatography (TLC) until the DEDAMs **1** substrate was completely consumed. After the completion of the reaction, the reaction system was cooled to room temperature. The reaction mixture was poured into 25 mL of water and ethyl acetate for extraction and separation. Then the crude product was collected by filtering and enrichment, which was purified by column chromatography (petroleum ether/EtOAc =10: 1) or recrystallization and obtained a series of pyridin-2-one compounds **3** with 83–98% yield.

Spectroscopic Data of Pyridin-2-ones 3

4-(Methylthio)-5-nitro-2-oxo-1-(4-(trifluoromethyl)benzyl)-6-((4-(trifluoromethyl) -benzyl)amino)-1,2-dihydropyridine-3-carb-onitrile (3a).

Yellow solid, mp 159.1–160.2 °C; IR (KBr): 3413, 2316, 1638, 1618, 1328, 1165, 1124, 1069 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 2.74$ (s, 3H, CH₃), 4.17 (m, 2H, CH₂), 5.47 (m, 2H, CH₂), 7.14–7.16 (m, 2H, ArH), 7.35–7.37 (m, 2H, ArH), 7.44–7.45 (m, 2H, ArH), 7.66–7.68 (m, 2H, ArH), 8.37 (br, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 19.4$, 45.3, 49.2, 89.2, 116.8, 122.0, 122.7, 123.6, 123.8, 125.2, 125.3, 125.7, 125.9, 127.2, 127.4, 128.7, 128.7, 129.2, 139.5, 140.9, 149.9, 156.2, 159.2; HRMS (ESI-TOF): m/z calcd for C₂₃H₁₅F₆N₄O₃S [M-H]⁻, 541.0775; found, 541.0773.

1-(4-Fluorobenzyl)-6-((4-fluorobenzyl)amino)-4-(methylthio)-5-nitro-2-oxo-1,2-di -hydropyridine-3-carbonitrile (3b).

Yellow solid, mp 177.8–178.0 °C; IR (KBr): 3334, 1639, 1554, 1512, 1494, 1466, 1328, 1235 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 2.72$ (s, 3H, CH₃), 4.10 (m, 2H, CH₂), 5.36 (m, 2H, CH₂), 6.97–7.02 (m, 4H, ArH), 7.14–7.21 (m, 4H, ArH), 8.31 (br, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 19.4$, 44.9, 49.0, 89.0, 115.3, 115.5, 115.8, 115.9, 116.9, 122.6, 128.9, 129.0, 130.6, 130.7, 132.3, 132.3, 149.8, 156.0, 159.2, 162.1, 162.1; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₅F₂N₄O₃S [M-H]⁻, 441.0838; found, 441.0836.

1-(4-Chlorobenzyl)-6-((4-chlorobenzyl)amino)-4-(methylthio)-5-nitro-2-oxo-1,2-dihydropyridine-3-carbonitrile (3c).

Yellow solid, mp 187.8–188.8 °C; IR (KBr): 3346, 2217, 1639, 1581, 1550, 1492, 1439, 1324 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.72$ (s, 3H, CH₃), 4.09 (m, 2H, CH₂), 5.36 (m, 2H, CH₂), 6.94–6.96 (m, 2H, ArH), 7.15–7.21 (m, 4H, ArH), 7.37–7.39 (m, 2H, ArH), 8.30 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.5$, 45.0, 49.1, 89.0, 116.8, 122.6, 128.5, 128.5, 128.7, 128.7, 129.0, 129.0, 130.3, 130.3, 132.6, 132.9, 133.6, 135.1, 149.8, 156.0, 159.2; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₅Cl₂N₄O₃S [M-H]⁻, 473.0247; found, 473.0247.

1-Benzyl-6-(benzylamino)-4-(methylthio)-5-nitro-2-oxo-1,2-di-hydropyridine-3carbonitrile (3d).

Red solid, mp 134–135 °C; IR (KBr): 3442, 2193, 1603, 1566, 1444, 1345, 1287, 1187 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 2.60$ (s, 3H, CH₃), 4.14 (m, 2H, CH₂), 5.18 (m, 2H, CH₂), 7.12–7.25 (m, 10H, ArH), 7.27 (br, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 19.4$, 44.6, 53.8, 82.6, 116.7, 119.2, 126.3, 126.3, 126.7, 126.7, 127.6, 127.6, 128.3, 128.4, 128.4, 139.4, 142.6, 146.8, 157.4, 161.6; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₇N₄O₃S [M-H]⁻ 405.1027; found, 405.1030.

1-(4-Methylbenzyl)-6-((4-methylbenzyl)amino)-4-(methylthio)-5-nitro-2-oxo-1,2-dihydropyridine-3-carbonitrile (3e).

Yellow solid, mp 182.7–183.6 °C; IR (KBr): 3400, 2215, 1647, 1552, 1501, 1460, 1327 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.24$ (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 2.69 (s, 3H, CH₃), 4.08 (m, 2H, CH₂), 5.37 (m, 2H, CH₂), 6.73–6.74 (m, 2H, ArH), 6.94–6.95 (m, 2H, ArH), 7.03–7.04 (m, 2H, ArH), 7.14–7.15 (m, 2H, ArH), 8.28 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.5$, 21.1, 21.2, 45.2, 49.4, 88.9,

116.9, 122.4, 126.8, 126. 8, 128.3, 128.3, 129.2, 129.2, 129.6, 129.6, 131.5, 133.1, 137.2, 137.5, 149.7, 155.8, 159.2; HRMS (ESI-TOF): m/z calcd for $C_{23}H_{21}N_4O_3S$ [M-H]⁻, 433.1340; found, 433.1340.

1-(4-Methoxybenzyl)-6-((4-methoxybenzyl)amino)-4-(methyl-thio)-5-nitro-2-oxo-1,2-dihydropyridine-3-carbonitrile (3f).

Yellow solid, mp 178.4–179.2 °C; IR (KBr): 3358, 2217, 1640, 1552, 1255, 1181, 1035, 812 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.70$ (s, 3H, CH₃), 3.71 (s, 3H, CH₃), 3.76 (s, 3H, CH₃), 4.06 (m, 2H, CH₂), 5.33 (m, 2H, CH₂), 6.69–6.71 (m, 2H, ArH), 6.81–6.83 (m, 2H, ArH), 6.87–6.89 (m, 2H, ArH), 7.06–7.08 (m, 2H, ArH), 8.21 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.5$, 44.8, 49.2, 55.5, 55.6, 88.9, 114.1, 114.1, 114.6, 114.6, 116.9, 122.3, 126.3, 127.9, 128.3, 128.3, 129.9, 129.9, 149.6, 155.8, 159.2, 159.3, 159.3; HRMS (ESI-TOF): m/z calcd for C₂₃H₂₁N₄O₅S [M-H]⁻, 465.1238; found, 465.1240.

1-(3,4-Difluorobenzyl)-6-((3,4-difluorobenzyl)amino)-4-(meth-ylthio)-5-nitro-2oxo-1,2-dihydropyridine-3-carbonitrile (3g).

Yellow solid, mp 186.9–187.8 °C; IR (KBr): 3321, 2215, 1632, 1546, 1465, 1397, 1291, 1214 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 2.74$ (s, 3H, CH₃), 4.05 (m, 2H, CH₂), 5.33 (m, 2H, CH₂), 6.92–6.95 (m, 1H, ArH), 6.97–6.99 (m, 2H, ArH), 7.20–7.27 (m, 2H, ArH), 7.35–7.37 (m, 1H, ArH), 8.21 (br, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 19.4$, 44.5, 48.9, 89.1, 116.4, 116.9, 117.4, 117.9, 118.0, 122.8, 123.6, 125.8, 132.2, 133.7, 149.3, 149.4, 149.5, 149.8, 149.8, 156.2, 159.2; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₃F₄N₄O₃S [M-H]⁻, 477.0650; found, 477.0652.

1-(2,4-Difluorobenzyl)-6-((2,4-difluorobenzyl)amino)-4-(meth-ylthio)-5-nitro-2oxo-1,2-dihydropyridine-3-carbonitrile (3h).

Yellow solid, mp 153.1–154.3 °C; IR (KBr): 3374, 2216, 1641, 1550, 1504, 1321, 1277, 1099 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.73$ (s, 3H, CH₃), 4.17 (m, 2H, CH₂), 5.29 (m, 2H, CH₂), 6.96–7.02 (m, 2H, ArH), 7.08–7.18 (m, 2H, ArH), 7.22–7.31 (m, 2H, ArH), 8.39 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.5$, 41.3, 43.1, 89.3, 104.1, 104.4, 104.6, 111.8, 116.7, 118.3, 119.5, 122.6, 128.9, 132.3, 150.3, 156.4, 158.9, 160.2, 160.2, 162.4, 162.4; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₃F₄N₄O₃S [M-H]⁻, 477.0650; found, 477.0651.

1-(2,4-Dichlorobenzyl)-6-((2,4-dichlorobenzyl)amino)-4-(meth-ylthio)-5-nitro-2oxo-1,2-dihydropyridine-3-carbonitrile (3i).

Yellow solid, mp 164.4–165.6 °C; IR (KBr): 3417, 2216, 1666, 1555, 1476, 1384, 1330, 1106 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.74$ (s, 3H, CH₃), 4.24 (m, 2H, CH₂), 5.21 (m, 2H, CH₂), 7.10–7.12 (m, 2H, ArH), 7.37–7.43 (m, 3H, ArH), 7.57–7.58 (m, 1H, ArH), 7.65–7.66 (m, 1H, ArH), 8.48 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.5$, 45.8, 47.3, 89.9, 116.6, 123.0, 127.7, 127.9, 128.1, 129.1, 129.3, 131.7, 132.9, 132.9, 133.1, 133.2, 133.8, 133.8, 151.0, 156.4, 159.0; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₃Cl₄N₄O₃S, [M-H]⁻, 540.9468; found, 540.9467.

1-Benzyl-6-(benzylamino)-2-imino-4-(methylthio)-5-nitro-1,2-dihydropyridine-3carbonitrile (3j).

Yellow solid, mp 175.9–176.0 °C; IR (KBr): 3345, 3033, 2923, 2215, 1638, 1590, 1492, 1466, 1351, 1054, 1031, 777, 693, 543, 465 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 2.71 (s, 3H, CH₃), 4.13 (m, 2H, CH₂), 5.43 (m, 2H, CH₂), 6.86–6.87 (m, 2H, ArH), 7.13–7.17 (m, 4H, ArH), 7.20–7.22 (m, 1H, ArH), 7.33–7.37 (m, 3H,

ArH), 8.41 (br, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 19.5$, 29.5, 45.5, 49.7, 89.0, 116.9, 122.4, 126.7, 126.7, 127.9, 127.9, 128.2, 128.3, 128.8, 129.0, 129.1, 134.6, 136.1, 149.9, 155.9, 159.2; HRMS (ESI-TOF): m/z calcd for C₂₁H₁₉N₅O₂S [M], 405.1259; found 405.1009.

4-(Methylthio)-5-nitro-2-oxo-1-(3-(trifluoromethyl)phenethyl)-6-((3-(trifluoromethyl)phenethyl)amino)-1,2-dihydropyridine-3-carbonitrile (3k).

Yellow solid, mp 73.3–73.9 °C; IR (KBr): 3414, 2217, 1664, 1550, 1494, 1330, 1122, 1073 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.68$ (s, 3H, CH₃), 2.76–2.79 (m, 2H, CH₂), 3.07–3.10 (m, 2H, CH₂), 4.25–4.28 (m, 2H, CH₂), 4.26(m, 2H, CH₂), 7.51–7.61 (m, 8H, ArH), 8.20 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.2$, 31.6, 34.7, 43.4, 47.0, 89.0, 116.6, 121.3, 121.4, 123.5, 123.6, 123.9, 125.7, 125.8, 127.9, 129.2, 129.6, 129.9, 133.4, 133.4, 139.4, 139.8, 149.7, 155.1, 158.7; HRMS (ESI-TOF): m/z calcd for C₂₅H₁₉F₆N₄O₃S [M-H]⁻, 569.1088; found, 569.1089.

1-(4-Fluorophenethyl)-6-((4-fluorophenethyl)amino)-4-(meth-ylthio)-5-nitro-2oxo-1,2-dihydropyridine-3-carbonitrile (31).

Yellow solid, mp 100.5–101.0 °C; IR (KBr): 3416, 2216, 1638, 1551, 1329, 1165, 1125, 1069 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.68$ (s, 3H, CH₃), 2.70–2.71(m, 2H, CH₂), 2.93–2.96 (m, 2H, CH₂), 3.25–3.26 (m, 2H, CH₂), 4.20–4.24 (m, 2H, CH₂), 7.10–7.17 (m, 4H, ArH), 7.23–7.26 (m, 4H, ArH), 8.11 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.4$, 31.2, 34.3, 43.8, 47.4, 89.0, 98.3, 115.5, 115.7, 115.7, 115.9, 116.8, 122.4, 131.0, 131.0, 131.0, 131.1, 134.3, 149.7, 155.1, 158.8, 161.6, 161.6; HRMS (ESI-TOF): m/z calcd for C₂₃H₁₉F₂N₄O₃S [M-H]⁻, 469.1151; found, 469.1152.

1-(3-Fluorophenethyl)-6-((3-fluorophenethyl)amino)-4-(methylthio)-5-nitro-2-oxo -1,2-dihydropyridine-3-carbonitrile (3m).

Yellow solid, mp 107.6–108.8 °C; IR (KBr): 3287, 2208, 1627, 1544, 1490, 1275, 1141 775 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 2.68 (s, 3H, CH₃), 2.69–2.72 (m, 2H, CH₂), 2.98–3.00 (m, 2H, CH₂), 3.30–3.31 (m, 2H, CH₂), 4.22–4.25 (m, 2H, CH₂), 7.05–7.09 (m, 6H, ArH), 7.33–7.35 (m, 2H, ArH), 8.13 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 19.4, 31.6, 34.7, 43.5, 47.1, 89.1, 113.8, 114.0, 115.9, 116.0, 116.7, 122.4, 125.3, 125.3, 130.7, 130.9, 140.9, 141.2, 149.7, 155.2, 158.8, 161.7, 161.7; HRMS (ESI-TOF): *m*/*z* calcd for C₂₃H₁₉F₂N₄O₃S [M-H]⁻, 469.1151; found, 469.1153.

1-(2-Fluorophenethyl)-6-((2-fluorophenethyl)amino)-4-(meth-ylthio)-5-nitro-2oxo-1,2-dihydropyridine-3-carbonitrile (3n).

Yellow solid, mp 118.2–119.0 °C; IR (KBr): 3417, 2207, 1628, 1546, 1493, 1453, 1234, 757 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): δ = 2.66 (s, 3H, CH₃), 2.82–2.85 (m, 2H, CH₂), 2.98– 3.01 (m, 2H, CH₂), 3.24 (m, 2H, CH₂), 4.31–4.34 (m, 2H, CH₂), 7.12–7.17 (m, 4H, ArH), 7.26–7.29 (m, 4H, ArH), 8.17 (br, 1H, NH); ¹³C NMR (125MHz, DMSO- d_6): δ = 19.4, 25.4, 28.7, 42.4, 46.1, 89.0, 115.5, 115.7, 116.7, 115.9, 116.7, 122.4, 124.7, 125.0, 129.3, 129.4, 131.6, 149.8, 155.1, 158.8, 160.1, 161.1, 161.1; HRMS (ESI-TOF): *m*/*z* calcd for C₂₃H₁₉F₂N₄O₃S [M-H]⁻, 469.1151; found, 469.1166.

1-(4-Chlorophenethyl)-6-((4-chlorophenethyl)amino)-4-(meth-ylthio)-5-nitro-2oxo-1,2-dihydropyridine-3-carbonitrile (30).

Yellow solid, mp 71.0–72.2 °C; IR (KBr): 3415, 2216, 1660, 1548, 1492, 1091, 1015, 816 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.68$ (s, 3H, CH₃), 2.71 (m, 2H, CH₂), 2.94–2.97 (m, 2H, CH₂), 3.24–3.28 (m, 2H, CH₂), 4.21–4.24 (m, 2H, CH₂), 7.23–7.25 (m, 4H, ArH), 7.33–7.34 (m, 2H, ArH), 7.37–7.39 (m, 2H, ArH), 8.12 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.4$, 31.3, 34.4, 43.6, 47.2, 89.0, 116.7, 122.4, 128.8, 128.8, 129.0, 129.0, 131.0, 131.0, 131.1, 131.1, 131.8, 131.9, 137.0, 137.2, 149.6, 155.1, 158.8; HRMS (ESI-TOF): m/z calcd for C₂₃H₁₉Cl₂N₄O₃S [M-H]⁻, 501.0560; found, 501.0561.

1-(3-Chlorophenethyl)-6-((3-chlorophenethyl)amino)-4-(meth-ylthio)-5-nitro-2oxo-1,2-dihydropyridine-3-carbonitrile (3p).

Yellow solid, mp 130.0–131.5 °C; IR (KBr): 3477, 3414, 1637, 1617, 1507, 1201, 767, 621 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 2.68$ (s, 3H, CH₃), 2.70 (m, 2H, CH₂), 2.96–2.99 (m, 2H, CH₂), 3.29–3.35 (m, 2H, CH₂), 4.21–4.24 (m, 2H, CH₂), 7.17–7.19 (m, 2H, ArH), 7.25–7.36 (m, 6H, ArH), 8.13 (br, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 19.4$, 31.3, 34.7, 43.5, 47.0, 89.1, 116.7, 122.4, 127.1, 127.1, 127.9, 128.0, 129.1, 129.1, 130.7, 130.8, 133.5, 133.7, 140.5, 140.8, 149.7, 155.1, 158.7; HRMS (ESI-TOF): m/z calcd for C₂₃H₁₉Cl₂N₄O₃S [M-H]⁻, 501.0560; found, 501.0564.

1-(4-Bromophenethyl)-6-((4-bromophenethyl)amino)-4-(meth-ylthio)-5-nitro-2oxo-1,2-dihydropyridine-3-carbonitrile (3q).

Yellow solid, mp 127.0–128.2 °C; IR (KBr): 3414, 2220, 1678, 1549, 1506, 1462, 1203, 767 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 2.68$ (s, 3H, CH₃), 2.65–2.67 (m, 2H, CH₂), 2.92–2.94 (m, 2H, CH₂), 3.23–3.26 (m, 2H, CH₂), 4.20–4.23 (m, 2H, CH₂), 7.17–7.18 (m, 4H, ArH), 7.46–7.48 (m, 2H, ArH), 7.51–7.52 (m, 2H, ArH), 8.12 (br, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 19.4$, 31.4, 34.5, 43.5, 47.1, 89.0, 116.7, 120.2, 120.3, 122.4, 131.4, 131.4, 131.5, 131.5, 131.7, 131.7, 131.9, 131.9, 137.5, 137.7, 149.6, 155.1, 158.8; HRMS (ESI-TOF): m/z calcd for C₂₃H₁₉Br₂N₄O₃S, [M-H]⁻, 588.9550; found, 588.9543.

4-(Methylthio)-5-nitro-2-oxo-1-phenethyl-6-(phenethylamino)-1,2-dihydropyridine-3-carbonitrile (3r).

Yellow solid, mp 165.1–166.1 °C; IR (KBr): 3416, 3260, 2208, 1626, 1544, 1492, 1453, 1354 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.68$ (s, 3H, CH₃), 2.71–2.72 (m, 2H, CH₂), 2.95–2.97 (m, 2H, CH₂), 3.26 (m, 2H, CH₂), 4.24–4.25 (m, 2H, CH₂), 7.22–7.34 (m, 10H, ArH), 8.13 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.4$, 31.6, 35.1, 43.8, 47.5, 89.0, 116.8, 122.4, 127.1, 127.1, 127.1, 127.1, 128.9, 128.9, 129.1, 129.1, 129.2, 129.2, 138.1, 138.2, 149.7, 155.1, 158.8; HRMS (ESI-TOF): m/z calcd for C₂₃H₂₁N₄O₃S [M-H]⁻, 433.1340; found, 433.1339.

1-(4-Methylphenethyl)-6-((4-methylphenethyl)amino)-4-(met-hylthio)-5-nitro-2oxo-1,2-dihydropyridine-3-carbonitrile (3s).

Yellow solid, mp 150.9–152.0 °C; IR (KBr):3475, 3415, 2210, 1617, 1540, 1494, 619, 478 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.23$ (s, 3H, CH₃), 2.25 (s, 3H, CH₃), 2.65–2.67 (m, 2H, CH₂), 2.88–2.91 (m, 2H, CH₂), 3.22–3.24 (m, 2H, CH₂), 4.18–4.23 (m, 2H, CH₂), 7.02–7.12 (m, 8H, ArH), 8.09 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.4$, 21.1, 21.1, 31.6, 34.8, 43.9, 47.6, 88.9, 116.8, 122.4, 128.9, 129.1, 129.1, 129.2, 129.4, 129.5, 129.6, 129.8, 134.9, 135.2, 136.1 136.2, 149.7, 155.0, 158.8; HRMS (ESI-TOF): m/z calcd for C₂₅H₂₅N₄O₃S [M-H]⁻, 461.1653; found, 461.1652.

1-(3,4-Dichlorophenethyl)-6-((3,4-dichlorophenethyl)amino)-4-(methylthio)-5nitro-2-oxo-1,2-dihydropyridine-3-carbonitrile (3t).

Yellow solid, m p. 162.2–163.1 °C; IR (KBr): 3417, 1638, 1618, 1561, 1220, 617, 479 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 2.68$ (m, 2H, CH₂), 2.68 (s, 3H, CH₃), 2.95–2.97 (m, 2H, CH₂), 3.30–3.31 (m, 2H, CH₂), 4.21–4.24 (m, 2H, CH₂), 7.19–7.22 (m, 2H, ArH), 7.44 (m, 1H, ArH), 7.51–7.58 (m, 3H, ArH), 8.11 (br, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 19.4$, 31.0, 34.1, 43.3, 46.8, 89.0, 116.7, 122.5, 129.6, 129.6, 129.8, 129.9, 130.9, 131.0, 131.1, 131.3, 131.4, 131.6, 139.2, 139.5, 149.7, 155.2, 158.7; HRMS (ESI-TOF): m/z calcd for C₂₃H₁₇Cl₄N₄O₃S [M-H]⁻, 568.9781; found, 568.9764.

1-(2,4-Dichlorophenethyl)-6-((2,4-dichlorophenethyl)amino)-4-(methylthio)-5nitro-2-oxo-1,2-dihydropyridine-3-carbonitrile (3u).

Yellow solid, mp 167.3–168.5 °C; IR (KBr): 3425, 3276, 2217, 1663, 1550, 1473, 1101, 867 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 2.67 (s, 3H, CH₃), 2.93 (m, 2H, CH₂), 3.06–3.09 (m, 2H, CH₂), 3.24 (m, 2H, CH₂), 4.37 (m, 2H, CH₂), 7.33–7.40 (m, 4H, ArH), 7.56–7.57 (m, 2H, ArH), 8.16 (br, 1H, NH); ¹³C NMR (125 MHz,

DMSO- d_6): $\delta = 19.4$, 29.3, 32.4, 42.0, 45.5, 89.0, 116.6, 122.4, 127.8, 128.2, 129.1, 129.4, 132.7, 132.7, 132.8, 132.9, 134.5, 134.7, 134.9, 134.9, 149.8, 155.2, 158.8; HRMS (ESI-TOF): m/z calcd for $C_{23}H_{17}Cl_4N_4O_3S$ [M-H]⁻, 568.9781; found, 568.9764.

1-(4-Fluorophenethyl)-6-((4-fluorophenethyl)amino)-4-(methylthio)-3,5-dinitropyridin-2(1*H*)-one (3v).

Yellow solid, mp 150.0–151.5 °C; IR (KBr): 3425, 2920, 1664, 1559, 1510, 1097, 802, 459 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 2.25$ (s, 3H, CH₃), 2.79– 2.88(m, 4H, CH₂), 3.40–3.41 (m, 2H, CH₂), 4.13–4.16 (m, 2H, CH₂), 6.85–6.89 (m, 3H, ArH), 6.94–6.97 (m, 4H, ArH), 7.07–7.09 (m, 1H, ArH), 7.19 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): $\delta = 16.5$, 31.5, 34.5, 47.0, 47.8, 114.7, 114.9, 115.0, 115.2, 119.7, 125.0, 129.1, 129.2, 129.2, 129.2, 130.9, 131.2, 144.3, 149.6, 152.6, 161.1, 161.1; HRMS (ESI-TOF): *m/z* calcd for C₂₂H₁₉F₂N₄O₅S [M-H]⁻, 489.1050; found, 489.1043.

4-(Methylthio)-5-nitro-2-oxo-1-(3-phenylpropyl)-6-((3-phenyl-propyl)amino)-1,2-dihydropyridine-3-carbonitrile (3w).

Yellow solid, mp 131.7–132.6 °C; IR (KBr): 3415, 2930, 2214, 1636, 1544, 1497, 1331, 700 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 1.84-1.90$ (m, 2H, CH₂), 1.92–1.97 (m, 2H, CH₂), 2.55–2.58 (m, 2H, CH₂), 2.63 (s, 3H, CH₃), 2.65–2.66 (m, 2H, CH₂), 2.99–3.02 (m, 2H, CH₂), 4.07–4.10 (m, 2H, CH₂) 7.12–7.27 (m, 10H, ArH), 7.91 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 19.3$, 28.1, 30.8, 32.6, 32.7, 42.4, 46.1, 88.5, 117.0, 122.1, 126.4, 126.4, 126.4, 126.4, 126.4, 128.6, 128.6, 128.8, 128.8, 141.3, 141.4, 149.8, 154.8, 158.9; HRMS (ESI-TOF): m/z calcd for C₂₅H₂₅N₄O₃S [M-H]⁻, 461.1653; found, 461.1653.

4-(Methylthio)-5-nitro-2-oxo-1-(4-phenylbutyl)-6-((4-phenyl-butyl)amino)-1,2-dihydropyridine-3-carbonitrile (3x).

Yellow solid, mp 131.9–133.0 °C; IR (KBr): 3414, 3337, 2929, 2215, 1639, 1551, 1495, 1452 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 1.54-1.60$ (m, 8H, CH₂), 2.51–2.55 (m, 2H, CH₂), 2.57–2.60 (m, 2H, CH₂), 2.67 (s, 3H, CH₃), 2.96–2.98 (m, 2H, CH₂), 4.05–4.08 (m, 2H, CH₂), 7.15–7.18 (m, 6H, ArH), 7.24–7.29 (m, 4H, ArH) 7.81 (br, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 19.3$, 26.4, 28.2, 28.4, 28.6, 35.0, 35.2, 42.3, 46.0, 88.4, 117.0, 122.2, 126.2, 126.2, 126.2, 126.2, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 128.7, 142.1, 142.2, 149.5, 154.7, 159.0; HRMS (ESI-TOF): m/z calcd for C₂₇H₂₉N₄O₃S [M-H]⁻, 489.1966; found, 489.1966.

1-Butyl-6-(butylamino)-4-(methylthio)-5-nitro-2-oxo-1,2-dihy-dropyridine-3-carb -onitrile (3y).

Yellow solid, mp 104.7–105.8 °C; IR (KBr): 3416, 3339, 2962, 2930, 2219, 1636, 1552, 1329 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 0.83-0.86$ (m, 3H, CH₃), 0.89–0.92 (m, 3H, CH₃), 1.23–1.27 (m, 2H, CH₂), 1.30–1.34 (m, 2H, CH₂), 1.49–1.56 (m, 2H, CH₂), 1.58–1.61 (m, 2H, CH₂), 2.68 (s, 3H, CH₃), 2.96–3.00 (m, 2H, CH₂), 4.04–4.06 (m, 2H, CH₂), 7.83 (br, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 13.9$, 14.1, 19.3, 19.8, 19.9, 28.8, 31.2, 42.2, 45.9, 88.3, 117.0, 122.1, 149.5, 154.6, 158.9; HRMS (ESI-TOF): m/z calcd for C₁₅H₂₁N₄O₃S [M-H]⁻, 337.1340; found, 337.1341.

General Procedure for the Preparation pyrimidin-4-ones 4

N-monosubstituted 1,1-ene diamines (MEDAMs) **1** (1.0 mmol), mercaptals **2** (1.0 mmol), Cs_2CO_3 (2.0 mmol) and acetonitrile(15.0 mL) were added into a 25 mL round-bottom flask, mix at reflux for about 4 h and monitored by TLC until the MEDAMs **1** substrate was completely consumed. After the completion of the reaction, the reaction system was cooled to room temperature. The reaction mixture was poured into 25 mL of water and 25 mL ethyl acetate for extraction and separation. Then the crude product was collected by filtering and enrichment, which was purified by column chromatography (petroleum ether/EtOAc =3: 1) and obtained a series of pyrimidin-4-ones **4** with 92–98% yield.

Spectroscopic Data of pyrimidin-4-ones 4

1-Benzyl-4-(methylthio)-2-(nitromethyl)-6-oxo-1,6-dihydropy-rimidine-5-carbonitrile (4a).

Orange solid, mp 115.0–116.2 °C; IR (KBr): 3291, 2926, 2206, 1506, 1439, 1291, 1215, 832 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.54$ (s, 3H, CH₃), 5.25 (m, 2H, CH₂), 6.11 (s, 2H, CH₂), 7.27–7.32 (m, 2H, ArH), 7.32–7.39 (m, 3H, ArH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.4$, 47.2, 78.1, 94.1, 114.1, 127.3, 127.3, 128.4, 129.3, 129.3, 134.4, 154.8, 158.2, 174.3; HRMS (ESI-TOF): m/z calcd for C₁₄H₁₁N₄O₃S [M-H]⁻, 315.0557; found, 315.0546.

1-(4-Methylbenzyl)-4-(methylthio)-2-(nitromethyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (4b).

White solid, mp 158.0–158.5 °C; IR (KBr): 3441, 2930, 2222, 1684, 1572, 1506, 1379, 974 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 2.29 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 5.21 (m, 2H, CH₂), 6.10 (s, 2H, CH₂), 7.18 (m, 4H, ArH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 13.4, 21.1, 46.9, 78.1, 94.0, 114.1, 126.9, 127.1, 129.9, 129.9, 131.4, 137.8, 154.8, 158.2, 174.2; HRMS (ESI-TOF): *m*/*z* calcd for C₁₅H₁₃N₄O₃S [M-H]⁻, 329.0714; found 329.0703.

1-(4-Fluorophenethyl)-4-(methylthio)-2-(nitromethyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (4c).

Yellow solid, mp 178.5–179.1°C; IR (KBr): 3415, 3015, 2223, 1671, 1553, 1508, 1161, 979 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.51$ (s, 3H, CH₃), 2.91–2.94 (m, 2H, CH₂), 4.03–4.06 (m, 2H, CH₂), 6.24(s, 2H, CH₂), 7.16–7.19 (m, 2H, ArH), 7.33–7.36 (m, 2H, ArH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.3$, 32.4, 46.3, 78.1, 93.8, 114.1, 115.7, 115.9, 131.2, 131.3, 134.0, 154.6, 157.9, 161.7, 173.8; HRMS (ESI-TOF): m/z calcd for C₁₅H₁₂FN₄O₃S [M-H]⁻, 347.0620; found, 347.0610.

4-(Methylthio)-2-(nitromethyl)-6-oxo-1-phenethyl-1,6-dihydropyrimidine-5-carbonitrile (4d).

Yellow solid, mp 127.1–127.9°C; IR (KBr): 3439, 2952, 2222, 1670, 1574, 1502, 1374, 1187 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 2.50$ (s, 3H, CH₃), 2.91–2.94 (m, 2H, CH₂), 4.04–4.07 (m, 2H, CH₂), 6.19 (s, 2H, CH₂), 7.26–7.36 (m, 5H, ArH); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 13.3$, 33.2, 46.4, 78.1, 93.8, 114.1, 127.3, 129.1, 129.1, 129.4, 129.4, 137.8, 154.6, 157.9, 173.8; HRMS (ESI-TOF): m/z calcd for C₁₅H₁₃N₄O₃S [M-H]⁻, 329.0714; found, 329.0708.

6-(Methylthio)-5-nitro-2-(nitromethyl)-3-phenethylpyrimidin-4(3H)-one (4e).

Yellow solid, mp 118.2-119.0 °C; IR (KBr): 3420, 1696, 1576, 1509, 1345, 1314,

969, 756 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_{δ}): δ = 2.42 (s, 3H, CH₃), 2.94–2.98 (m, 2H, CH₂), 4.07–4.10 (m, 2H, CH₂), 6.22 (s, 2H, CH₂), 7.22–7.37 (m, 5H, ArH); ¹³C NMR (125MHz, DMSO- d_{δ}): δ = 14.4, 33.2, 46.6, 78.1, 127.2, 128.9, 129.1, 129.2, 129.4, 131.4, 137.9, 138.9, 153.1, 166.8; HRMS (ESI-TOF): *m/z* calcd for C₁₄H₁₃N₄O₅S [M-H]⁻, 349.0612; found, 349.0609.

1-Butyl-4-(methylthio)-2-(nitromethyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (4f).

Yellow solid, mp 175.0–176.5 °C; IR (KBr): 3422, 2962, 2222, 1690, 1505, 1342, 1135, 779 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 0.90-0.92$ (m, 3H, CH₃), 1.32–1.36(m, 3H, CH₂), 1.56–1.59 (m, 2H, CH₂), 3.87–3.89 (m, 3H, CH₃), 6.28 (s, 2H, CH₂); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 13.2$, 13.9, 19.9, 29.7, 44.8, 78.1, 93.7, 114.1, 154.6, 158.0, 173.7; HRMS (ESI-TOF): m/z calcd for C₁₁H₁₄N₄O₃S [M-H]⁻, 281.0714; found, 281.0704.

X-ray Structure and Data³ of 3f

Figure S1 X-Ray crystal structure of 3f

Table S1	Crystal	data	and	structure	refinement	for	3f

	5		
Empirical formula	$C_{25}H_{28}N_4O_6S_2$		
Formula weight	544.63		
Temperature	293(2) K		
Wavelength	0.71073 A		
Crystal system, space group	Triclinic, P-1		
Unit cell dimensions	a = 10.2637(11) A	alpha = 97.1560(10) deg.	
	b = 12.3231(14) A	beta = 107.7330(10) deg.	
	c = 12.7383(14) A	gamma = 112.9910(10)	
deg.			
Volume	1357.1(3) A^3		
Z, Calculated density	2, 1.333 Mg/m^3		
Absorption coefficient	0.242 mm^-1		
F(000)	572		
Crystal size	0.30 x 0.24 x 0.16 r	nm	
Theta range for data collection	1.75 to 25.15 deg.		
Limiting indices	-12<=h<=12, -14<=k<=14, -15<=l<=15		
Reflections collected / unique	10855 / 4829 [R(int) = 0.0309]		
Completeness to theta $= 25.15$	99.4 %		
Max. and min. transmission	0.9623 and 0.9309		
Refinement method	Full-matrix least-squ	uares on F^2	
Data / restraints / parameters	4829 / 0 / 339		
Goodness-of-fit on F ²	1.052	1.052	
Final R indices [I>2sigma(I)]	R1 = 0.0516, $wR2 = 0.1439$		
R indices (all data)	R1 = 0.0834, wR2 =	= 0.1688	
Largest diff, peak and hole	0.345 and -0.308 e.A	<u>^-3</u>	

N(1)-C(6)	1.372(3)
N(1)-C(5)	1.408(3)
N(1)-C(9)	1.477(3)
N(2)-O(4)	1.216(3)
N(2)-O(3)	1.233(3)
N(2)-C(7)	1.452(4)
N(3)-C(6)	1.340(3)
N(3)-C(17)	1.459(3)
N(3)-H(3)	0.8600
N(4)-C(8)	1.141(4)
O(1)-S(2)	1.474(2)
O(2)-C(5)	1.222(3)
O(5)-C(13)	1 375(4)
O(5)- $C(16)$	1 400(4)
O(6)- $C(21)$	1 369(4)
O(6) - C(24)	1 427(4)
S(1)-C(3)	1 771(3)
S(1) = C(25)	1 776(4)
S(1) = C(2)	1 759(5)
S(2)-C(2) S(2)-C(1)	1.757(5)
$C(1)$ -H(1 Δ)	0.9600
C(1)-H(1R)	0.9600
C(1)- $H(1C)$	0.9600
C(1)- $H(1C)C(2)$ $H(2A)$	0.9600
C(2)-H(2R)	0.9000
C(2)-H(2D)	0.9600
C(2)-T(2C)	1.373(A)
C(3)-C(7)	1.373(4) 1 400(4)
C(3) - C(7)	1.400(4) 1.426(4)
C(4) - C(6)	1.420(4) 1.447(4)
C(4) - C(3)	1.447(4) 1.410(4)
C(0) - C(1)	1.410(4) 1 501(4)
C(0) = C(10)	0.0700
$C(0) H(0\mathbf{P})$	0.9700
C(3)-II(3D) C(10) C(15)	1.272(4)
C(10) - C(13)	1.372(4) 1.204(4)
C(10)-C(11) C(11) C(12)	1.374(4)
C(11)-C(12) C(11) H(11)	0.0200
C(11)-H(11) C(12) C(12)	0.9300
C(12)-C(13)	1.575(5)
C(12)-H(12)	0.9300
C(13)-C(14)	1.584(4)
C(14)-C(15)	1.405(4)
C(14)-H(14)	0.9300
C(15)-H(15)	0.9300
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
C(17)-C(18)	1.506(4)

C(17)-H(17A)	0 9700	
C(17) - H(17R)	0.9700	
C(18)-C(19)	1 385(4)	
C(18) - C(23)	1 388(4)	
C(19)-C(20)	1.300(4) 1 377(4)	
C(19)-C(20)	0.9300	
C(20)-C(21)	1.393(4)	
C(20)-C(21)	0.9300	
C(20)-H(20)	1.375(4)	
C(21)- $C(22)C(22)$ $C(23)$	1.375(4) 1 370(4)	
C(22)-C(23) C(22)-H(22)	0.9300	
C(22)- $H(22)C(23)$ $H(23)$	0.9300	
C(23) - H(23) C(24) + H(24A)	0.9500	
C(24) - H(24R) C(24) + H(24R)	0.9600	
C(24) - H(24D) C(24) + H(24C)	0.9600	
C(24) - H(24C) C(25) H(25A)	0.9600	
C(25) - H(25R)	0.9000	
C(25) - H(25D) C(25) - H(25C)	0.9600	
$C(23)$ - $\Pi(23C)$ C(6) N(1) C(5)	122 5(2)	
C(0)-N(1)-C(3) C(6) N(1) C(0)	125.3(2) 120.2(2)	
C(0)-N(1)-C(9) C(5) N(1) C(0)	120.5(2) 116 1(2)	
O(4) N(2) O(2)	110.1(2) 122.2(2)	
O(4) - N(2) - O(3) O(4) N(2) - O(7)	123.2(3) 118 7(2)	
O(4)-N(2)-C(7)	118.7(5) 118.0(2)	
O(5)-N(2)-O(7)	116.0(3)	
C(0) - N(3) - C(17)	120.1(2)	
C(0)- $N(3)$ - $H(3)C(17)$ $N(2)$ $H(2)$	117.0	
C(17) - N(5) - H(5) C(12) O(5) C(16)	117.0 120.1(2)	
C(13)-O(5)-C(16)	120.1(3)	
C(21)-O(0)-C(24)	117.2(2) 104.50(17)	
C(3)-S(1)-C(25)	104.50(17)	
O(1)-S(2)-C(2)	105.8(2)	
O(1)-S(2)-C(1)	106.0(2)	
C(2)-S(2)-C(1)	97.9(3)	
S(2)-C(1)-H(1A)	109.5	
S(2)-C(1)-H(1B)	109.5	
H(1A)-C(1)-H(1B)	109.5	
S(2)-C(1)-H(1C)	109.5	
H(IA)-C(I)-H(IC)	109.5	
H(1B)-C(1)-H(1C)	109.5	
S(2)-C(2)-H(2A)	109.5	
S(2)-C(2)-H(2B)	109.5	
H(2A)-C(2)-H(2B)	109.5	
S(2)-C(2)-H(2C)	109.5	
H(2A)-C(2)-H(2C)	109.5	
H(2B)-C(2)-H(2C)	109.5	
C(4)-C(3)-C(7)	118.6(3)	
C(4)-C(3)-S(1)	122.2(2)	
C(7)-C(3)-S(1)	119.1(2)	
C(3)-C(4)-C(8)	123.3(3)	
C(3)-C(4)-C(5)	121.8(3)	

C(8)-C(4)-C(5)	114.8(3)
O(2)-C(5)-N(1)	120.2(3)
O(2)-C(5)-C(4)	123.7(3)
N(1)-C(5)-C(4)	116.0(2)
N(3)-C(6)-N(1)	117.8(2)
N(3)-C(6)-C(7)	124.6(2)
N(1)-C(6)-C(7)	117.6(2)
C(3)-C(7)-C(6)	122.1(2)
C(3)-C(7)-N(2)	118.4(2)
C(6)-C(7)-N(2)	118.5(2)
N(4)-C(8)-C(4)	178.5(4)
N(1)-C(9)-C(10)	114 6(2)
N(1) - C(9) - H(9A)	108.6
C(10) - C(9) - H(9A)	108.6
N(1)-C(9)-H(9B)	108.6
C(10) - C(9) - H(9B)	108.6
H(9A)-C(9)-H(9B)	107.6
C(15)-C(10)-C(11)	118 3(3)
C(15) - C(10) - C(11)	1227(3)
C(13)-C(10)-C(9)	122.7(3) 110 1(3)
C(11)-C(10)-C(3) C(12) C(11) C(10)	119.1(3) 121.2(3)
C(12) - C(11) - C(10) C(12) - C(11) + H(11)	121.2(5)
C(12)- $C(11)$ - $H(11)C(10)$ $C(11)$ $H(11)$	119.4
$C(10)-C(11)-\Pi(11)$ C(11)-C(12)-C(12)	117.4 120 $4(2)$
C(11) - C(12) - C(13) C(11) - C(12) - U(12)	120.4(5)
$C(11)-C(12)-\Pi(12)$ $C(12)-C(12)-\Pi(12)$	119.8
$C(12) - C(12) - \Pi(12)$ C(12) - C(13) - O(5)	117.0 115.8(2)
C(12)-C(13)-O(3) C(12)-C(13)-C(14)	113.8(3)
C(12)-C(13)-C(14) O(5) C(12) C(14)	120.0(3) 124.2(2)
C(12) C(14) C(15)	124.2(3) 110 0(2)
C(12) - C(14) - C(15)	119.0(5)
C(15) - C(14) - H(14)	120.5
C(15)-C(14)-H(14)	120.5
C(10) - C(15) - C(14)	121.1(5)
C(10)-C(15)-H(15)	119.4
C(14)-C(15)-H(15)	119.4
O(5)-C(16)-H(16A)	109.5
O(5)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
O(5)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
N(3)-C(17)-C(18)	110.9(2)
N(3)-C(17)-H(17A)	109.5
C(18)-C(17)-H(17A)	109.5
N(3)-C(17)-H(17B)	109.5
С(18)-С(17)-Н(17В)	109.5
H(17A)-C(17)-H(17B)	108.0
C(19)-C(18)-C(23)	117.0(3)
C(19)-C(18)-C(17)	123.1(3)
C(23)-C(18)-C(17)	119.9(3)

C(20)-C(19)-C(18)	121.7(3)	
C(20)-C(19)-H(19)	119.2	
C(18)-C(19)-H(19)	119.2	
C(19)-C(20)-C(21)	120.1(3)	
C(19)-C(20)-H(20)	119.9	
C(21)-C(20)-H(20)	119.9	
O(6)-C(21)-C(22)	124.7(3)	
O(6)-C(21)-C(20)	116.2(3)	
C(22)-C(21)-C(20)	119.1(3)	
C(21)-C(22)-C(23)	119.9(3)	
C(21)-C(22)-H(22)	120.1	
C(23)-C(22)-H(22)	120.1	
C(22)-C(23)-C(18)	122.2(3)	
C(22)-C(23)-H(23)	118.9	
C(18)-C(23)-H(23)	118.9	
O(6)-C(24)-H(24A)	109.5	
O(6)-C(24)-H(24B)	109.5	
H(24A)-C(24)-H(24B)	109.5	
O(6)-C(24)-H(24C)	109.5	
H(24A)-C(24)-H(24C)	109.5	
H(24B)-C(24)-H(24C)	109.5	
S(1)-C(25)-H(25A)	109.5	
S(1)-C(25)-H(25B)	109.5	
H(25A)-C(25)-H(25B)	109.5	
S(1)-C(25)-H(25C)	109.5	
H(25A)-C(25)-H(25C)	109.5	
H(25B)-C(25)-H(25C)	109.5	

Symmetry transformations used to generate equivalent atoms:

_

X-ray Structure and Data⁴ of 4f

Figure S2 X-Ray crystal structure of 4f

Identification code	1	
Empirical formula	$C_{11} H_{14} N_4 O_3 S$	
Formula weight	282.32	
Temperature	293(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, P 21/n	
Unit cell dimensions	a = 5.033(4) A alpha = 90 deg	
	b = 14.483(12) A beta = 96.932(10) deg	
	c = 19.140(16) A gamma = 90 deg.	
Volume	1385(2) A^3	
Z, Calculated density	4, 1.354 Mg/m^3	
Absorption coefficient	0.244 mm^-1	
F(000)	592	
Crystal size	0.360 x 0.220 x 0.190 mm	
Theta range for data collection	1.768 to 27.885 deg.	
Limiting indices	-6<=h<=6, -18<=k<=19, -24<=l<=24	
Reflections collected / unique	12559 / 3203 [R(int) = 0.0346]	
Completeness to theta $= 25.242$	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.955 and 0.918	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3203 / 0 / 174	
Goodness-of-fit on F^2	1.063	
Final R indices [I>2sigma(I)]	R1 = 0.0669, wR2 = 0.2032	
R indices (all data)	R1 = 0.0980, wR2 = 0.228	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.657 and -0.688 e.A^-3	

Table S3Crystal data and structure refinement for 4f

Table 54. Dolla lenguis [A] a	
N(1)-O(1)	1.205(4)
N(1)-O(2)	1.208(4)
N(1)-C(1)	1.489(4)
N(2)-C(2)	1.359(4)
N(2)-C(3)	1.425(4)
N(2)-C(8)	1.488(4)
N(3)- $C(2)$	1.312(4)
N(3)-C(6)	1.362(4)
N(4)-C(5)	1.152(5)
O(3)-C(3)	1.214(4)
S(1)-C(6)	1.742(3)
S(1)-C(7)	1.799(4)
C(1) - C(2)	1.512(5)
C(1) - H(1A)	0.9700
C(1) - H(1B)	0.9700
C(3)-C(4)	1.446(4)
C(4)-C(6)	1.381(4)
C(4) - C(5)	1.436(4)
C(7) - H(7A)	0.9600
C(7) - H(7B)	0.9600
C(7) - H(7C)	0.9600
C(8)-C(9)	1.525(7)
C(8) - H(8A)	0.9700
C(8)-H(8B)	0.9700
C(9)-C(10)	1.283(8)
C(9) - H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-C(11)	1.529(7)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
O(1)-N(1)-O(2)	126.1(4)
O(1)-N(1)-C(1)	117.1(3)
O(2)-N(1)-C(1)	116.8(3)
C(2)-N(2)-C(3)	120.2(2)
C(2)-N(2)-C(8)	123.3(3)
C(3)-N(2)-C(8)	116.5(3)
C(2)-N(3)-C(6)	117.8(3)
C(6)-S(1)-C(7)	103.33(17)
N(1)-C(1)-C(2)	109.3(3)
N(1)-C(1)-H(1A)	109.8
C(2)-C(1)-H(1A)	109.8
N(1)-C(1)-H(1B)	109.8
C(2)-C(1)-H(1B)	109.8
H(1A)-C(1)-H(1B)	108.3
N(3)-C(2)-N(2)	125.5(3)
N(3)-C(2)-C(1)	117.5(3)
	/

Table S4.Bond lengths [A] and angles [deg] for**4f**.

N(2)-C(2)	-C(1)	117.0(3)
O(3)-C(3)	-N(2)	120.6(3)
O(3)-C(3)	-C(4)	125.9(3)
N(2)-C(3)	-C(4)	113.5(3)
C(6)-C(4)	-C(5)	121.3(3)
C(6)-C(4)	-C(3)	121.2(3)
C(5)-C(4)	-C(3)	117.4(3)
N(4)-C(5)	-C(4)	178.7(4)
N(3)-C(6)	-C(4)	121.5(3)
N(3)-C(6)	- S (1)	118.3(2)
C(4)-C(6)	-S(1)	120.2(2)
S(1)-C(7)-	H(7A)	109.5
S(1)-C(7)-	H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
S(1)-C(7)-	H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7	7)-H(7C)	109.5
N(2)-C(8)	-C(9)	112.9(3)
N(2)-C(8)	-H(8A)	109.0
C(9)-C(8)	-H(8A)	109.0
N(2)-C(8)	-H(8B)	109.0
C(9)-C(8)	-H(8B)	109.0
H(8A)-C(8	8)-H(8B)	107.8
C(10)-C(9)-C(8)	124.6(7)
C(10)-C(9)-H(9A)	106.2
C(8)-C(9)	-H(9A)	106.2
C(10)-C(9)-H(9B)	106.2
C(8)-C(9)	-H(9B)	106.2
H(9A)-C(9	9)-H(9B)	106.4
C(9)-C(10)-C(11)	121.3(7)
C(9)-C(10)-H(10A)	107.0
C(11)-C(1	0)-H(10A)	107.0
C(9)-C(10)-H(10B)	107.0
C(11)-C(1	0)-H(10B)	107.0
H(10A)-C	(10)-H(10B)	106.7
C(10)-C(1	1)-H(11A)	109.5
C(10)-C(1	1)-H(11B)	109.5
H(11A)-C	(11)-H(11B)	109.5
C(10)-C(1	1)-H(11C)	109.5
H(11A)-C	(11)-H(11C)	109.5
H(11B)-C	(11)-H(11C)	109.5

Symmetry transformations used to generate equivalent atoms:

¹H NMR and ¹³C NMR Spectra of compounds 3~4

Figure 1. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **3a**

Figure 2. ¹³C NMR (150MHz, DMSO- d_6) spectra of compound 3a

Figure 3. ¹HNMR (600 MHz, DMSO-*d*₆) spectra of compound **3b**

Figure 4. ¹³CNMR (150 MHz, DMSO- d_6) spectra of compound **3b**

Figure 5. ¹HNMR (500 MHz, DMSO-*d*₆) spectra of compound **3**c

Figure 7. ¹HNMR (600 MHz, DMSO- d_6) spectra of compound **3d**

Figure 8. ¹³CNMR (150 MHz, DMSO- d_6) spectra of compound 3d

Figure 9. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **3e**

Figure 11. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **3f**

Figure 13. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound 3g

Figure 14. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound 3g

Figure 16. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound **3h**

Figure 18. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **3i**

Figure 22. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **3**k

Figure 23. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **3k**

Figure 24. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **3**l

Figure 26. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 3m

Figure 27. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **3m**

Figure 28. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **3n**

Figure 29. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 3n

Figure 30. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **30**

Figure 31. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **30**

Figure 32. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **3p**

Figure 33. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound 3p

Figure 36. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **3r**

Figure 37. ¹³CNMR (125 MHz, DMSO- d_6) spectra of compound 3r

Figure 39. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **3s**

Figure 40. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **3t**

Figure 41. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound **3t**

Figure 42. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **3u**

Figure 43. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **3u**

Figure 44. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3v

Figure 46. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **3**w

Figure 47. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 3w

Figure 48. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **3x**

Figure 49. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound **3x**

Figure 50. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **3**y

Figure 51. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound 3y

Figure 52. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4a**

Figure 54. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **4b**

Figure 56. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4**c

Figure 58. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **4d**

Figure 60. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **4e**

Figure 63. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound **4f**

- 1. R. C. da Silva, G. P. da Silva, D. P. Sangi, J. G. de M. Pontes, A. G. Ferreira, A. G. Corr êa and M. W. Paix ão, *Tetrahedron*, 2013, **69**, 9007.
- 2. (a) W. M. Al-Adiwish, M. I. M. Tahir and W. A. Yaacob, Synthetic. Commun., 2013, 43, 3203; (b) Y.-C. Wu, H.-J. Li and H.-Z. Yang, Org. Biomol. Chem., 2010, 8, 3394.
- 3. CCDC 1549520 contain the supplementary crystallographic data for compound **3f**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.
- 4. CCDC 1553238 contain the supplementary crystallographic data for compound **4f**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk /data_request/cif</u>.