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Instruments and Materials

'H and ">C NMR spectra were recorded on a JINM-ECS400 or Varian 600MHz
spectrometer, using CD,Cl, or CDCl; with TMS as an internal standard.
High-resolution electrospray ionization mass spectra (HR-ESI-MS) were obtained on
a Bruker APEX II FT-MS mass spectrometer. UV-vis absorption spectra were
recorded by using a SHIMADZU UV-2550 spectrophotometer. Luminescence
measurements were made on a Hitachi-7000 spectrofluorimeter with a xenon lamp
as the excitation source. SEM images were obtained with JSM-5600LV. TEM images
were recorded on JEM-2100 operating at 200 kV. Elemental analyses were
performed with an Elementar VarioELcube. Melting points (M.p.) were determined
on a Kofler apparatus. All measurements were carried out at room temperature. All
reaction operations were performed under an anhydrous Ar atmosphere. Toluene was

distilled over Na.



Synthesis of 4DB24C8-TPE and E/Z-2DBA-TPE

E/Z-2Br-TPE® was synthesized according to the procedure as described previously
and showed an identical 'H NMR spectrum to the reported one therein.

E/Z-2CHO-TPE: E/Z-2Br-TPE (490 mg, 1.00 mmol), 4-Formylphenylboronic acid
(450 mg, 3.00 mmol), Na,CO; (848 mg, 8.00 mmol) and Pd (PPh;)4 (115.6 mg, 0.10
mmol) were added to a mixture solvent of toluene (15 mL) and H,O (4 mL) in an
oven dried Schlenk flask under an argon atmosphere. The resulting mixture was
stirred at 100 °C for 3 days. The crude product was extracted with dichloromethane
three times, and then the organic layers were merged and dried over anhydrous
MgSO4. The crude product was further purified by column chromatography (SiO;)
using dichloromethane/petroleum (1:4) as eluent to afford E-2CHO-TPE as a yellow
solid (80 mg, 15% yield). "H NMR (400 MHz, CDCls, ppm), J: 10.04 (s, 2H, CHO),
791 (d, J=8.0 Hz, 4H, Ar), 7.72 (d, /= 8.0 Hz, 4H, Ar), 7.41 (d, J= 8.0 Hz, 4H, Ar),
7.17-7.10 (m, 14H, Ar). °C NMR (400 MHz, CDCls, ppm), J: 191.87, 146.56, 144.00,
143.32, 140.84, 137.42, 135.05, 131.99, 131.37, 130.21, 127.94, 127.34, 126.83,
126.53, 77.32, 77.00, 76.68. HR-ESI-MS (m/z), [C4oH230,+H]" calculated: 541.2162,
found: 541.2153. Elemental analysis calcd. for C4H230,-0.4CH,Cl,: C 84.44, H 5.05;
found: C 84.35, H 4.67. M.p. 265-266 °C.

Z-2CHO-TPE was obtained as a luminous yellow solid (50 mg, 11% vyield). 'H
NMR (400 MHz, CDCls, ppm), J: 10.03 (s, 2H, CHO), 7.91 (d, J = 8.0 Hz, 4H, Ar),
7.72 (d, J= 8.0 Hz, 4H, Ar), 7.44 (d, J = 8.0 Hz, 4H, Ar), 7.19 (d, J = 8.0 Hz, 4H, Ar),
7.15-7.13 (m, 6H, Ar), 7.09-7.06 (m, 4H, Ar). >C NMR (400 MHz, CDCls, ppm), ¢:
191.83, 146.49, 143.99, 143.33, 140.84, 137.52, 135.08, 132.03, 131.34, 130.21,
127.,79, 127.34, 126.75, 126.67, 77.32, 77.00, 76.68. HR-ESI-MS (m/z),
[C40H230,+H]" calculated: 541.2162, found: 541.2155. Elemental analysis calcd. for
C40H2302°0.4CH,Cly: C 84.44, H 5.05; found: C 83.99, H 5.15. M.p. 192-194 °C.

E-2DBA-TPE: E-2CHO-TPE (120 mg, 0.22 mmol) and benzylamine (23.8 mg,
0.22 mmol) were added into an oven dried Schlenk flask and dissolved in anhydrous

dichloromethane (12 mL) under an argon atmosphere. The resulting mixture was
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allowed to stir at 35 °C for 1 day. The in-situ "H NMR spectrum revealed that 99% of
E-2CHO-TPE was converted into a Schiff-base form. Subsequently sodium
borohydride (134.5 mg, 3.56 mmol) was added under the argon atmosphere. The
resulting solution was stirred at room temperature for another day. The solvent was
removed and then the crude product was purified by recrystallization in a
chloroform/methanol mixture solvent (1/3). The final product E-2DBA-TPE was
obtained as a nattierblue solid (143 mg, 90% yield). 'H NMR (400 MHz, CDCl,,
ppm), o: 7.51 (d, J = 8.0 Hz, 4H, Ar), 7.38-7.29 (m, 16H, Ar), 7.25-7.21 (m, 2H, Ar),
7.15-7.08 (m, 14H, Ar), 3.80 (d, J = 4.0 Hz, 8H, NCH,). >C NMR (400 MHz, CDCl,,
ppm), o: 144.35, 144.34, 141.28, 140.45, 139.18, 132.25, 131.84, 129.07, 128.82,
128.65, 128.34, 127.34, 127.15, 126.50, 54.54, 54.27, 54.00, 53.73, 53.46, 30.25.
HR-ESI-MS (m/z), [Cs4HasN,+H]" calculated: 723.3734, found: 723.3718. Elemental
analysis calcd. for Cs4H4sN»-0.3CHCls: C 85.72, H 6.40, N 3.68; found: C 85.28, H
6.45,N 3.19. M.p. 174-175 °C.

Z-2DBA-TPE was similarly obtained as a gray solid, but using Z-2CHO-TPE as a
reactant (116 mg, 73% yield). '"H NMR (400 MHz, CDCl,, ppm), J: 7.52 (d, J = 8.0
Hz, 4H, Ar), 7.41-7.29 (m, 16H, Ar), 7.25-7.21 (m, 2H, Ar), 7.15-7.07 (m, 14H, Ar),
3.79 (d, J = 8.0 Hz,8H, NCH,). °C NMR (400 MHz, CDCL,, ppm), &: 144.43, 143.26,
141.27, 141.25, 140.43, 139.48, 139.28, 132.24, 131.85, 129.05, 128.81, 128.64,
128.21, 127.33, 127.18, 126.99, 126.63, 54.54, 54.27, 54.00, 53.73, 53.46, 30.25.
HR-ESI-MS (m/z), [C54H48N2+H]+ calculated: 723.3734, found: 723.3721. Elemental
analysis calcd. For Cs4HygN,-0.3CH,Cl,: C 87.14, H 6.28, N 3.74; found: C 87.04, H
6.18, N 3.56. M.p. 190-192 °C.

Br THF, -78°C, overnight
o 0 0\_J
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Br-24C8 Bpin-24C8

Scheme S1 Synthesis of Bpin—24C8.sz

41-TPE: 4Br-TPE (1.30 g, 2.0 mmol) was added to 50 mL THF in an oven dried

Schlenk flask under an argon atmosphere at room temperature. Then the mixture
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solution was cooled to =78 °C. n-BuLi (6.0 ml, 9.6 mmol) was added to the solution
and stirred for 1 h. Then, I, (3.05 g, 12.0 mmol) was added to the mixture solution and
stirred at room temperature overnight. Sodium thiosulfate pentahydrate was added to
the mixture solution to quench the reaction and then the crude product was extracted
by dichloromethane (3x50 mL). The organic layers were merged and dried by
anhydrous MgSOy. Further purification was achieved by column chromatography
(S10,) using petroleum ether as eluent. 4I-TPE was isolated as a white solid (1.05 g,
63% yield). '"H NMR (400 MHz, CDCls, ppm), J: 7.46 (d, J= 8.0 Hz, 8H, Ar), 6.70 (d,
J = 8.0 Hz, 8H, Ar). °C NMR (400 MHz, CDCls, ppm), J: 142,03, 139,76, 137.22,
132.94, 132.74, 131.28, 77.32, 77.00, 76.68. HR-ESI-MS (m/z), [CasHiels]"
calculated: 835.7425, found: 835.7413. Elemental analysis calcd. for
Ca6H1614°0.4CsHy4: C 39.19, H 2.50; found: C 39.47, H 1.82. M.p. 294-296 °C.

4DB24C8-TPE: 41-TPE (100 mg, 0.12 mmol), Bpin-24C8 (413 mg, 0.72 mmol),
NayCOs (153 mg, 1.44 mmol) and Pd(PPh;)4 (27.73 mg, 0.024 mmol) were dissolved
to a mixture solvent of water (5 mL) and toluene (10 mL) in an oven dried Schlenk
flask under an argon atmosphere. The resulting mixture was stirred at 100 °C for 3 d.
The solvent was removed and then the crude product was extracted by
dichloromethane (3x25 mL). The organic layers were merged and dried over
anhydrous MgSQ,. Further purification was achieved by column chromatography
(S10,) using dichloromethane/methanol (10/1) as eluent. 4DB24C8-TPE was isolated
as a dark green solid (43 mg, 17% yield). '"H NMR (400 MHz, CDCls, ppm), 6: 7.32
(d, J=8 Hz, 8H, Ar), 7.14-7.08 (m, 16H, Ar), 6.90-6,88 (m, 20H, Ar), 4.19-4.16 (m,
32H, OCH,), 3.92 (s, 32H, OCHy), 3.83-3.82 (m, 32H, OCH,). *C NMR (600 MHz,
CDCls, ppm), o: 148.96, 148.53, 142.50, 138.54, 134.06, 131.84, 12591, 121.42,
114.12, 77.21, 77.00, 76.79, 71.28, 69.92, 69.40, 29.69. HR-ESI-MS (m/z),
[Ci22H14003+Na]" calculated: 2140.9253, found: 2140.9229. Elemental analysis
calced. for Cj2H4003,°0.6CHCl3: C 67.24, H 6.47; found: C 67.62, H 5.89. M.p.
147-148 °C.
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Fig. S1 'H NMR spectrum of E-2CHO-TPE.
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Fig. S2 °C NMR spectrum of E-2CHO-TPE.
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Fig. S3 'H NMR spectrum of Z-2CHO-TPE.
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Fig. S5 'H NMR spectrum of E-2DBA-TPE.
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Fig. S6 °C NMR spectrum of E-2DBA-TPE.
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Fig. 7 'H NMR spectrum of Z-2DBA-TPE.
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Fig. S8 °C NMR spectrum of Z-2DBA-TPE.
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Fig. S11 'H NMR spectrum of 4DB24C8-TPE.
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Fig. $12 °C NMR spectrum of 4DB24C8-TPE.
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Fig. S13 Full NOESY-NMR of E-2CHO-TPE.
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Fig. S14 Partial NOESY-NMR of E-2CHO-TPE.
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Fig. S15 Full COSY-NMR of E-2CHO-TPE.
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Fig. S17 Full NOESY-NMR of Z-2CHO-TPE.
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Fig. S18 Partial NOESY-NMR of Z-2CHO-TPE.
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Fig. S19 Full COSY-NMR of Z-2CHO-TPE.
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Fig. S20 Partial COSY-NMR of Z-2CHO-TPE.
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Fig. S21 Full NOESY-NMR of E-2DBA-TPE.
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Fig. S22 Full COSY-NMR of E-2DBA-TPE.
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Fig. S24 Full NOESY-NMR of Z-2DBA-TPE.
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Fig. S26 Full COSY-NMR of Z-2DBA-TPE.
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Fig. S27 Partial COSY-NMR of Z-2DBA-TPE.
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Fig. S30 FT-IR spectra of E-2CHO-TPE and Z-2CHO-TPE.
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Fig. S31 FT-IR spectra of E-2DBA-TPE and Z-2DBA-TPE.
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Fig. S32 Fluorescent spectra of solid E-2DBA-TPE (black) and Z-2DBA-TPE (red).
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Fig. S34 Photoluminescence spectra and plots of emission intensities of 10 uM
E-2DBA-TPE (a, d), Z-2DBA-TPE (b, e) and 4DB24CS8-TPE (c, f) in THF-Water
mixture solvents with different fractions of water. Photographs of E-2DBA-TPE (j),
Z-2DBA-TPE (h) and 4DB24CS8-TPE (i) in THF-Water mixture solvents under UV
irradiation.

(Since water is a poor solvent for E/Z-2DBA-TPE and 4DB24C8-TPE, with the water
content increase, which started to aggregate, which led to the enhanced emission. But
compared to E/Z-2DBA-TPE, the 4DB24CS8-TPE has larger hydrophobic groups,
when the water content was increased to 95%, the solubility of 4DB24CS8-TPE
became much poorer and the large-sized aggregates were formed. These aggregates
would further form the precipitation, thus decreased the effective 4DB24C8-TPE
concentration in the solution and led to a decreased emission. Besides this, amorphous
aggregates abruptly formed at 95% water content could trap the solvent molecules

inside. In these loose aggregates, the TPE molecules had undergone partial
intra-molecular motions, which also decreased the emission.)
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Fig. S35 Fluorescence spectra of E-2DBA-TPE (a, b, and c) and Z-2DBA-TPE (d, e
and f) mixed with 4DB24CS8-TPE in THF treated with NaCl (Relative to the amount
of 4DB24C8-TPE). Fluorescence spectra of ¢ and f were obtained under an acid
condition.

Results and discussion: To explain the reason of stepwise emission
enhancements and blue shifts as “could be due to a synergic interaction of the
host—guest recognition of DB24C8 and dibenzylammonium moieties together with
the salting-out effect”, we have carried out several control experiments. (1) 12.0
equivalents of NaCl were gradually added to the THF solution of 2 equivalents of
E-2DBA-TPE (Figure S35a and b) and Z-2DBA-TPE (Figure S35d and e) mixed with
4DB24C8-TPE. In the case of E-2DBA-TPE, the fluorescence intensities increased
only slightly with a factor of 1.4, 1.6, and 1.7 at the first, second, and third adding
NaCl, respectively. Similarly, the fluorescence of Z-2DBA-TPE was only enhanced to
1.2, 1.3, and 1.5 folds. (2) Furthermore, 4.0 Equivalents of HCI were added to the
THF solutions containing E-2DBA-TPE (Figure S35c) or Z-2DBA-TPE (Figure S35f)
mixed with 4DB24C8-TPE and 8.0 equivalents of NaCl. The fluorescence intensities
increased to 129 and 78 times for E-2DBA-TPE and Z-2DBA-TPE, respectively,
close to those values after the third acidification (157 and 97 times). These results
revealed that the host—guest interaction between the protonated DBA and DB24CS8
and the salting-out effect played a leading role in the enhancement of emission.
According to the previous work,’ when the TPE moieties adopted a tighter packing in
ordered structures, the intramolecular motion was restricted more efficiently, leading
to the stronger and larger blue-shifted emissions. In this study, the emission peaks of
E-2DBA-TPE and Z-2DBA-TPE showed clear blue shifts of 67 and 38 nm,
respectively, indicating more and more compact packing of TPE groups. The pH
values of the original solution and the solutions after successive addition of HCl and
NaOH were (7.41, 5.43, and 13.82) for E-2DBA-TPE and (7.42, 5.43, and 13.82) for
Z-2DBA-TPE, respectively.
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Fig. S36 DLS plots of 10 uM E-2DBA-TPE (red), Z-2DBA-TPE (black) in
THF-Water mixture solvent with 99% water content.
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Fig. S37 DLS plots of 4DB24C8-TPE in THF-Water mixture solvent (10 pM) with
90%, 95%, 99% water content, respectively.
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Fig. S38 SEM and TEM images of 10 uM E-2DBA-TPE (a, d), Z-2DBA-TPE (b, ¢)
in THF-Water mixture solvent with 99% water content, and 4DB24C8-TPE (c, f) in
THF-Water mixture solvent with 90% water content.
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Fig. S39 Partial '"H NMR spectra (400 MHz, CD,Cl,, a) of 0.5 mM 4DB24C8-TPE
and 1.0 mM Z-2DBA-TPE, (b) obtained by adding 2.4 equivalents of HPF¢ to the
solution of (a), and (c) obtained by adding 2.8 equivalents of P;-/Bu to the solution of

(b).
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Fig. S40 Diffusion-ordered NMR spectra (DOSY) of (a) 0.5 mM 4DB24C8-TPE and
1.0 mM E-2DBA-TPE, (b) obtained by adding 2.4 equivalents of HFA to the solution
of (a), (c) obtained by adding 2.8 equivalents of P;-7Bu to the solution of (b).
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Fig. S41 Diffusion-ordered NMR spectra (DOSY) of (a) 0.5 mM 4DB24C8-TPE and
1.0 mM Z-2DBA-TPE, (b) obtained by adding 2.4 equivalents of HFA to the solution
of (a), (c) obtained by adding 2.8 equivalents of P;-7Bu to the solution of (b).
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Additional results and discussion:

We have carried out DOSY NMR experiments to measure the diffusion coefficients
(Fig. S40 and S41). At a concentration of 0.5 mM 4DB24C8-TPE and 1.0 mM
E-2DBA-TPE, single bands occurred at logD = -8.91 and -9.46 for the neutral
solution and its acid treatment, respectively, demonstrating an appreciable size
increase from monomer to the SHP as a result of the successful supramolecular
polymerization (Fig. S40a and b). When slightly excessive P;-/Bu (2.8 equiv.) was
added to the above solution, the logD was -9.30 and became smaller than that
obtained under the acid condition (Fig. 40c), indicative of the reversible formation of
the SHP. A similar acid-base controlled SHP was also fabricated by mixing
4DB24C8-TPE and Z-2DBA-TPE (Fig. S41). The values of logD for the acid-base
cycle were determined to be -9.13, -9.40, and -9.20, respectively, again suggesting
that the the formation of the SHP was reversible.

Table S1. Luminescence lifetime (7; and ;) and (fluorescence quantum yield @) for
E-2DBA-TPE (Solid) and Z-2DBA-TPE (Solid).

Sample 7;[ns] RW % n[ns] RW % @ (%)
E-2DBA-TPE 2.54 55.73 3.93 4427  77.26

Z-2DBA-TPE 1.57 50.49 3.30 49.51 53.56
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