Supporting Information

Kinetic resolution of (*RS*)-1-chloro-3-(4-(2-methoxyethyl)phenoxy) propan-2-ol : a metoprolol intermediate and its validation through homology model of *Pseudomonas fluorescens* lipase

Surbhi Soni ^[a], Bharat P. Dwivedee ^[b], Vishnu K. Sharma ^[c], Uttam C. Banerjee ^{*[b]}

S1. ¹H NMR spectrum of [(RS)-4]

S2. ¹³C NMR spectroscopy of [(RS)-4]

mpl-f1 C13CPD CDC13 {D:\CIL\U.C.Banerjee_108\NMR\2016\Aug} Administr

S3. ¹H NMR spectrum of [(RS)-3]

S4. ¹³C NMR spectroscopy of [(RS)-3]

mpl-f2 C13CPD CDCl3 {D:\CIL\U.C.Banerjee_108\NMR\2016\Aug} Administr

S6. HPLC chromatogram of (S)-4

S7. Optimization of process parameters for the kinetic resolution of (RS)-4

(a) Effect of organic solvents: Toluene was selected as a suitable solvent for the PFL catalyzed kinetic resolution of (RS)-4. The effect of different organic solvents on PFL mediated kinetic resolution of (RS)-4 are presented in Table S1.

S.No	Solvent	%C ^d	ee s (%) ^b	ее_Р (%) с	Ee
1.	Isooctane	50.3 ± 1.72	99.9 ± 1.93	98.7 ± 1.77	1102 ± 4.58
2.	Hexane	50.8 ± 2.15	99.9 ± 2.42	96.8 ± 1.30	443 ± 4.58
3.	Heptane	50.0 ± 2.00	98.6 ± 2.12	98.6 ± 2.21	713 ± 4.16
4.	DEE	50.1 ± 1.54	99.0 ± 2.08	98.6 ± 1.89	761 ± 2.08
5.	n-Butanol	50.3 ± 3.06	99.7 ± 1.67	98.6 ± 1.97	919 ± 3.51
6.	Toluene	50.5 ± 1.48	97.4 ± 2.40	95.5 ± 2.34	188 ± 4.00

^aConditions: (RS)-4 (20 mM) in toluene (1 mL) was treated with vinyl acetate (5.4 mmol) at 30 °C in the presence of different lipases (300 IU/mL).

^bEnantiomeric excess of (S)-4 was determined by HPLC analysis (Daicel Chiralcel OD-H column) 90:10; Hexane: IPA, flow rate of 1.0 mL/min, detected at 254 nm.

^cEnantiomeric excess of (*R*)-**5** was determined by HPLC analysis (Daicel Chiralcel OD-H column) 90:10; Hexane: IPA, flow rate of 1.0 mL/min, detected at 254 nm.

^d% Conversion were calculated from the enantiomeric excess (ee) of (S)-4 and (R)-5 as follows: Conversion (C) = $e_s/(ee_s + ee_p)$.

^eE value were calculated using the formula:

 $E = \ln [(ee_p (1 - ee_s)/(ee_p + ee_s)]/\ln[(ee_p (1 + ee_s)/(ee_p + ee_s)]]$

*The values presented in the table are the average of three repetitive experiments

(b) Effect of reaction time: PFL showed the best result for the kinetic resolution of (*RS*)-4 in 3 h using h toluene as solvent. The effect of reaction time on PFL mediated kinetic resolution of (*RS*)-4 are presented in Table S2.

S.No.	Reaction time (h)	%C	ee _s (%)	ee _P (%)	E
1.	0.5	32.5 ± 1.05	47.4 ± 1.27	98.3 ± 2.08	185 ± 3.51
2.	1	42.7 ± 2.30	73.3 ± 2.76	98.6 ± 2.43	303 ± 2.65
3.	1.5	48.7 ± 2.56	91.8 ± 1.76	96.7 ± 3.99	195 ± 2.65
4.	2	49.6 ± 2.39	95.6 ± 2.76	97.2 ± 3.08	270 ± 3.79
5.	2.5	49.7 ± 1.59	95.6 ± 2.95	96.9 ± 2.75	245 ± 3.21
6.	3	49.9 ± 2.25	95.5 ± 3.03	95.9 ± 2.71	184 ± 3.61
7.	4	50.8 ± 1.91	98.9 ± 2.04	95.8 ± 3.66	244 ± 4.00
8.	6	50.2 ± 3.04	99.7 ± 2.81	99.0 ± 1.12	1316 ± 3.21
9.	12	50.1 ± 3.66	99.7 ± 3.33	99.5 ± 2.52	2545 ± 4.04

Table S2. Effect of reaction time on the enantioselectivity in the resolution of (RS)-4 with lipase^{a≠}

^aConditions: (*RS*)-4 (20 mM) in toluene (1 mL) was treated with vinyl acetate (5.4 mmol) at 30 °C in the presence of the PFL (300 IU/mL) for different time intervals.

*The reaction conditions and formulas are same as mentioned in Table S1.

*The values presented in the table are the average of three repetitive experiments.

(c) Effect of acyl donors: PFL showed the best result for kinetic resolution of (*RS*)-4 using vinyl acetate as acyl donor and toluene as solvent in 3 h. The effect of different acyl donors on PFL mediated kinetic resolution of (*RS*)-4 are presented in **Table S3**.

Table S3. Effect of acyl donors on the (PFL) catalyzed transesterification of (RS)-6 in toluene at

S.No.	Acyl donors ^a	C (%)	ee _s (%)	ee _p (%)	E
1.	Benzyl acetate	9.3 ± 1.72	54.2 ± 2.81	5.6 ± 2.06	0.30 ± 0.36
2.	Ethyl acetate	1.0 ± 4.51	64.9 ± 3.67	0.6 ± 2.89	4.70 ± 1.53
3.	Isopropyl acetate	48.3 ± 2.61	96.0 ± 2.40	89.6 ± 4.89	150 ± 3.54
4.	Vinyl acetate	50.1 ± 2.57	96.4 ± 2.36	96.1 ± 1.45	205 ± 3.78

^aConditions: (*RS*)-**4** (20 mM) in toluene (1 mL) was treated with different acyl donors (5.4 mmol) at 30 °C in the presence of the PFL (300 IU/mL) for different time intervals.

≠The reaction conditions and formulas are same as mentioned in Table S1.

*The values presented in the table are the average of three repetitive experiments.

(d) Effect of concentration of acyl donor: PFL showed the best result for kinetic resolution of (*RS*)-4 using vinyl acetate as acyl donor and toluene as solvent in 3 h. The effect of concentration of vinyl acetate on PFL mediated kinetic resolution of (*RS*)-4 are presented in Table S4.

S.No.	Concentration of acyl donors ^a (mmol)	C ^b (%)	ee _s (%)	ee _p ^d (%)	Ee
1.	1.25	49.6 ± 2.47	94.6 ± 2.15	96.2 ± 3.65	189 ± 3.61
2.	2.5	46.2 ± 2.46	83.3 ± 2.63	97.1 ± 5.05	178 ± 4.36
3.	5.0	48.3 ± 3.30	91.0 ± 2.36	97.0 ± 1.35	200 ± 3.06
4.	10.0	47.0 ± 3.14	85.4 ± 5.66	96.5 ± 4.79	152 ± 4.58
5.	12.5	46.4 ± 2.82	83.6 ± 2.50	96.6 ± 2.56	154 ± 5.03

Table S4. Effect of concentration of vinyl acetate on the (PFL) catalyzed transesterification of (RS)-4 in toluene a*

^{*o*}Conditions: (*RS*)-**4** (20 mM) in toluene (1 mL) was treated with different concentration of vinyl acetate (5.4 mmol) at 30 °C in the presence of the PFL (300 IU/mL) for different time intervals.

≠The reaction conditions and formulas are same as mentioned in Table S1.

*The values presented in the table are the average of three repetitive experiments.

(e) Optimization of substrate concentration: PFL showed the best result for kinetic resolution of (*RS*)-4 using toluene and vinyl acetate at a substrate concentration of 20 mM in 3 h. The effect of different substrate concentration on PFL mediated kinetic resolution of (*RS*)-4 are presented in Table S5.

Table S5. Effect of substrate concentration on the	enantioselectivity in the resolution of (RS)-4 in toluene a*
--	--

S.No.	Substrate concentration (mM)	% C ^b	ees (%)°	ee _P (%) ^d	E ^e
1.	1	48.7 ± 2.79	92.0 ± 1.59	97.0 ± 1.80	217 ± 3.51
2.	5	48.9 ± 3.06	93.2 ± 1.75	97.3 ± 2.75	248 ± 3.61
3.	10	49.2 ± 1.78	93.4 ± 1.71	96.3 ± 1.15	187 ± 2.00
4.	20	50.0 ± 1.20	97.0 ± 2.55	96.9 ± 2.50	273 ± 2.65
5.	30	48.4 ± 3.40	91.2 ± 2.25	97.4 ± 2.46	242 ± 2.52

^oConditions: Different concentration of (*RS*)-4 in toluene (1 mL) was treated with vinyl acetate (5.4 mmol) at 30 °C in the presence of the PFL (300 IU/mL) for 3 h.

≠The reaction conditions and formulas are same as mentioned in Table S1.

* The values presented in the table are the average of three repetitive experiments.

(f) Optimization of enzyme concentration: PFL showed the best result for kinetic resolution of (*RS*)-4 at the concentration of 400 IU/mL, using toluene and vinyl acetate and substrate concentration of 10 mM in 3 h. The effect of different concentration of PFL on kinetic resolution of (*RS*)-4 are presented in **Table S6**.

S.No.	Enzyme concentration (IU)	% C ^b	ee _s (%) ^c	ee _P (%) ^d	Ee
1.	20	9.8 ± 1.46	10.0 ± 1.80	92.9 ± 1.22	29.9 ± 2.70
2.	100	33.8 ± 2.95	48.9 ± 1.11	95.9 ± 2.97	77.3 ± 3.24
3.	200	44.0 ± 1.57	76.0 ± 1.80	96.6 ± 1.97	133 ± 2.75
4.	400	50.6 ± 2.01	97.4 ± 1.85	95.1 ± 2.39	173 ± 2.91
5.	500	49.7 ± 3.31	95.4 ± 3.15	96.7 ± 2.46	229 ± 4.15
6.	600	49.8 ± 2.55	97.5 ± 2.51	98.3 ± 3.04	522 ± 3.21

Table S6. Effect of enzyme concentration on the enantioselectivity in the resolution of (RS)-4 in toluene at

^oConditions: (*RS*)-4 (10 mM) in toluene (1 mL) was treated with vinyl acetate (5.4 mmol) at 30 °C in the presence of different concentration of PFL for 3 h.

≠The reaction conditions and formulas are same as mentioned in Table S1.

* The values presented in the table are the average of three repetitive experiments.

(g) Effect of temperature : PFL showed the best result for kinetic resolution of (*RS*)-4 at 30 °C using toluene and vinyl acetate at a substrate concentration of 10 mM in 3 h. The effect of different temperature on PFL mediated kinetic resolution of (*RS*)-4 are presented in Table S7.

Table S7. Effect of temperature on the enantioselectivity in the resolution of (RS)-4 in toluene a≠

S.No.	Temperature (°C)	% C	ees (%)	ee _P (%)	E
1.	4	50.5 ± 1.05	97.9 ± 2.05	95.8 ± 2.33	214 ± 3.79
2.	20	48.6 ± 2.72	92.0 ± 2.75	97.2 ± 2.75	233 ± 2.52
3.	25	46.3 ± 2.31	82.8 ± 2.41	96.3 ± 1.85	137 ± 2.08
4.	30	49.3 ± 1.86	93.8 ± 2.48	96.5 ± 1.04	201 ± 1.53
5.	40	45.9 ± 1.91	82.1 ± 2.73	96.9 ± 1.42	163 ± 2.52
6.	50	50.3 ± 2.73	97.8 ± 4.98	96.8 ± 2.50	274 ± 4.51
7.	60	50.4 ± 3.01	99.3 ± 1.54	97.6 ± 3.40	459 ± 4.93

^aConditions: (*RS*)-**4** (10 mM) in toluene (1 mL) was treated with vinyl acetate (5.4 mmol) at different temperature in the presence of the PFL (300 IU/mL) for 3 h.

≠The reaction conditions and formulas are same as mentioned in **Table S1**.

*The values presented in the table are the average of three repetitive experiments.

S8. HPLC chromatogram for PFL-catalyzed transesterification of (RS)-4 at optimized condition	ons
--	-----

Lipase	Pseudomomas fluorescens lipase (PFL)
Solvent	Toluene

Reaction time	3 h
Enzyme concentration	400 IU/mL
Substrate concentration	10 mM
Acyl donor	Vinyl acetate
Temperature	30 °C

S9. HPLC chromatogram for PFL-catalyzed transesterification of (RS)-4 at optimized condition

