Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

P450 monooxygenase ComJ catalyses side chain phenolic cross-coupling during complestatin biosynthesis

Aurelio Mollo, A. Nikolai von Krusenstiern, Joshua A. Bulos, Veronika Ulrich, Karin S. Åkerfeldt, Max J. Cryle* and Louise K. Charkoudian[†]

> * max.cryle@monash.edu [†] Icharkou@haverford.edu

Content

Design of Gibson Assembly primers and Gibson Assembly protocol	.2
Gibson Assembly primer list and thermal cycling conditions	3
Standard cloning primer list	.4
LC/MS analysis of turnover mixtures	5
Fig. S1: SDS-PAGE gel and titers of all proteins used	6
Fig. S2: SEC interaction analyses of ComJ and ComI with X _{com} 7	
Fig. S3: SEC interaction analyses of ComJ and ComI with PCP7 _{com}	8
Fig. S4: Turnover of D-Hpg-D-Hpg-L-Tyr (1) on PCP7-X _{van} by OxyB _{van}	.9
Fig. S5: Turnovers of 1 on alternate PCP domains and extended periods1	.0
Fig. S6: ComK possesses all the spectroscopic features of a ferredoxin1	.1

Fig. S7 – S14: Spectra of free peptides, peptide-thiophenols, and peptide-CoAs......12

Design of Gibson Assembly primers and Gibson Assembly protocol

All pANK constructs were designed to have the open reading frame (ORF) inserted into a pET28a expression vector. Thus, a pET28a vector was linearized through digestion with NdeI and EcoRI for 4 hr at 37 °C and purified by gel electrophoresis and gel extraction (GenCatch Advanced Gel Extraction Kit, Epoch Life Science). In the case of pAM2, the starting vector was pET24b-MBP-PCP7- X_{van} ,¹ which was digested overnight with NcoI and XhoI, and again purified by gel electrophoresis and gel extraction.

Separately, primer pairs were designed to amplify the ORFs of interest from *S. lavendulae* gDNA (see next page). Each primer was composed of the following two elements: (i) 19 base pairs of homology to the desired insert sequence, allowing for base pairing during PCR amplification; and, (ii) 25 base pairs of homology with the linearized pET28a/pET24b vector, containing the restriction site. The primers were ordered from Eurofins Genomics and used to amplify the gene of interest *via* PCR (see next page), and the amplicon purified by gel electrophoresis and gel extraction.

Once the insert and vector had been obtained as described above, each at a concentration of > 20 ng/µL after gel extraction, the two were combined in a 3:1 insert:vector **molar** ratio in a volume of 5 µL and added to 15 µL of Gibson Assembly[®] Master Mix (New England BioLabs), consisting of T5 Exonuclease, Phusion Polymerase, Taq Ligase, dNTPs, and MgCl₂ in Tris-HCl buffer. The resulting mixture was incubated for 1 hr at 50 °C and then transformed into DH5 α competent cells *via* a 90-second, 42 °C heat shock. Resulting colonies were used to inoculate 10 mL LB/kan cultures (50 µg/mL) and grown overnight at 37 °C, 225 RPM. Plasmid DNA was isolated using a Qiagen QIAprep Spin Miniprep Kit and sequenced using standard T7 + T7term primers (Eurofins Genomics).

¹ J. Bogomolovas, B. Simon, M. Sattler and G. Stier, *Protein Expr. Purif.*, 2009, **64**, 16–23.

Gibson Assembly primer list and thermal cycling conditions

Below are the primers used to amplify *S. lavendulae* gDNA for the construction of plasmids encoding ComI, ComJ, ComK, and MBP-PCP7- X_{com} . Restriction sides are **bolded** (restriction enzyme written on the right of the primer sequence), while the sequence complementary to the insert is <u>underlined</u>.

Primers for plasmid encoding ComI (pANK00, pET28a):

Fc	or:	CCTGGTGCCGCGCGGCAGC CATATG <u>GCGTCCCGTGACGTCCCCG</u>	Ndel
Re	ev:	AAGCTTGTCGACGGAGCTC GAATTC<u>CTACCAGGCCACCGGCAGC</u>	EcoRI
Primers fo	or plasi	mid encoding ComJ (pANK01, PET28a):	
Fc	٦r.		Ndol

FUL.		Nuel
Rev:	AAGCTTGTCGACGGAGCTC GAATTC <u>TCACCAGGCGACCGGAAGG</u>	EcoRI

Primers for plasmid encoding ComK (pANK12, PET28a):

For:	CCTGGTGCCGCGCGGCAGCCATATGGAGATCCGGATCGACCGCG	Ndel
Rev:	AAGCTTGTCGACGGAGCTC GAATTC TCAGCGGCGCCCTCCCCGC	EcoRI

Primers for plasmid encoding MBP-PCP7-X_{com} (pAM2, pET24b):

For:	AATCTTTATTTTCAGGGCGCCATGG <u>CCCGGGTCGCCGGACGCGCCC</u>	Ncol
Rev:	AGTGGTGGTGGTGGTGGTG CTCGAG <u>GGTCACCTGCCGCTCGGTG</u>	Xhol

Thermal cycling conditions for pANK00 and pANK01 (5% DMSO, 1.1 µg gDNA, Taq Polymerase):

1.	94 °C	3:00
2.	94 °C	1:00
3.	62 °C	1:00
4.	72 °C	2:00
5.	GO TO 2, 34 times	
6.	72 °C	10:00
7.	4 °C	HOLD

Thermal cycling conditions for pANK12 (3% DMSO, 67 ng gDNA, MiProof Polymerase):

1.	98 °C	0:30
2.	98 °C	0:10
3.	75 °C	0:30
4.	GO TO 2, 34 times	
5.	72 °C	10:00
6.	4 °C	HOLD

Thermal cycling conditions for pAM2 (67 ng gDNA, Q5[®] High-Fidelity DNA Polymerase, 20% Q5 High GC Enhancer):

1.	98 °C	1:00
2.	98 °C	0:10
3.	90 °C (- 0.5 °C/CYC)	0:30
4.	72 °C	1:00
5.	GO TO 2, 29 times	
6.	98 °C	0:10
7.	74 °C	0:30
8.	72 °C	1:00
9.	GO TO 6, 19 times	
10.	72 °C	10:00
11.	4 °C	HOLD

Standard cloning primer list

Below are the primers used to amplify the E. coli optimized gene *comD* (Eurofins MWG) for the construction of plasmids encoding $MBP-PCP7_{com}$ and $MBP-X_{com}$. Restriction sides are **bolded** (restriction enzyme written on the right of the primer sequence), while the sequence complementary to the insert is <u>underlined</u>.

Primers for plasmid encoding MBP-PCP7_{com}:

For:	TATTA CCATGG GCGTTGCGGGTCGTGCCCCGGAATC	Ncol
Rev:	TATAA CTCGAG CGGACGCTCGTCGATCTGACGCAGTG	Xhol

Primers for plasmid encoding MBP-X_{com}:

For:	TATTAC CATGG <u>GCGTACGGCCAGCACTGCGTCAGATCG</u>	Ncol
------	--	------

Rev: TATAACTCGAGTGTTACCTGGCGCTCGGTGTC

LC/MS analysis of turnover mixtures

Following elution from SPE columns, the turnover mixtures were analyzed on an Agilent 6545 Q-TOF LC/MS. The column used was an Agilent Eclipse plus C18 with a pore size of 5 μ m, and the flow rate was kept constant at 0.2 mL/min. Solvents used were: A = HPLC-grade H₂O incl. 0.1% formic acid (FA), B = HPLC-grade acetonitrile (ACN) incl. 0.1% FA. Gradient: 0 min 5% B; 30 min up to 40% B, 31 min up to 95% B, 31-43 min 95% B, 44 min down to 5% B, 44-56 min 5% B. The UV detector was set to 205 nm, and species detected in negative mode in the mass spectrometer.

Fig. S1 SDS-PAGE gel and titers of all proteins used. Titers (to the nearest mg/L) are indicated beneath each lane. Expected molecular weights are indicated in parentheses following the name of the protein. Ladder used: Precision Plus Protein[™] All Blue Standards (Bio-Rad)

Fig. S2 SEC interaction analyses of ComJ (left) and ComI (right) with X_{com} . A clear shift in retention volume is evident upon introduction of MBP- X_{com} (bottom) compared to the P450 alone (top), indicating a tight interaction between the P450 and X_{com} domain. The absorptions at $\lambda = 280$ nm (blue; protein-specific) and at $\lambda = 415$ nm (magenta; heme-specific) were monitored simultaneously. [P450] 33.3 μ M, [X] 100 μ M.

Fig. S3 SEC interaction analyses of ComJ (left) and ComI (right) with PCP7_{com}. No significant shift in retention volume is evident upon introduction of MBP-PCP7_{com} (bottom) compared to the P450 alone (top), indicating a lack of any strong interaction between the two proteins. The absorptions at $\lambda = 280$ nm (blue; protein-specific) and at $\lambda = 415$ nm (magenta; heme-specific) were monitored simultaneously. [P450] 33.3 μ M, [PCP]: 100 μ M.

Fig. S4 Turnover of D-Hpg-D-Hpg-L-Tyr (1) on PCP7-X_{van} by $OxyB_{van}$. Left: UV spectrum (205 nm) showing the decrease in reactant concentration upon addition of $OxyB_{van}$ (grey dashed line) compared to the no-Oxy negative control (thick black line). Right: Extracted ion count (EIC) spectrum showing the increase in cyclized product (m/z 531.2) upon addition of $OxyB_{van}$ (grey dashed line) compared to the no-Oxy negative control (thick black line).

Fig. S5 Turnover of **1** in the presence of ComJ and the following conditions: MBP-PCP7-X_{com}, 1 hr (left, reproduced from Fig. 5E in the main text); MBP-PCP7-X_{van}, 1 hr (center); MBP-PCP7-X_{com}, 2 hr (right). For all three, the reduction system consisted of SpFd and EcoFlvR, with NADPH as the electron donor and G6P and G6P-DH to regenerate depleted NADPH.

Fig. S6 UV-vis spectrum of purified ComK. The maximum at ~422 nm is characteristic of ferredoxin [2Fe-2S] clusters.

Fig. S7 (part 1 of 2) ¹H-NMR spectrum of Ac-NH-D-Hpg-D-Hpg-L-Tyr-OH (DMSO-D₆).

* Peak at 2.50 ppm is a residual solvent peak.

Fig. S7 (part 2 of 2) ¹H-NMR spectrum of Ac-NH-D-Hpg-D-Hpg-L-Tyr-OH (DMSO-D₆).

* Peak at 7.95 ppm is a residual DMF peak.

Fig. S8 (part 1 of 2) ¹H-NMR spectrum of Ac-NH-D-Hpg-D-Hpg-D-Tyr-OH (DMSO-D₆).

* Peak at 3.33 ppm is a residual water peak; peak at 2.50 ppm is a residual solvent peak.

Fig. S8 (part 2 of 2) ¹H-NMR spectrum of Ac-NH-D-Hpg-D-Hpg-D-Tyr-OH (DMSO-D₆).

Fig. S9 (part 1 of 2) ¹H-NMR spectrum of Ac-NH-D-Hpg-D-Hpg-L-Tyr-SPh (DMSO-D₆).

* Peak at 3.33 ppm is a residual water peak; peak at 2.50 ppm is a residual solvent peak.

Fig. S9 (part 2 of 2) ¹H-NMR spectrum of Ac-NH-D-Hpg-D-Hpg-L-Tyr-SPh (DMSO-D₆).

Fig. S10 (part 1 of 2) ¹H-NMR spectrum of Ac-NH-D-Hpg-D-Hpg-D-Tyr-SPh (DMSO-D₆).

* Peak at 3.33 ppm is a residual water peak; peak at 2.50 ppm is a residual solvent peak.

Fig. S10 (part 2 of 2) ¹H-NMR spectrum of Ac-NH-D-Hpg-D-Hpg-D-Tyr-SPh (DMSO-D₆).

*ChemDraw ¹H shift predictions in DMSO-D₆

Fig. S11 Partially assigned ¹H-NMR spectrum of Ac-NH-D-Hpg-D-Hpg-L-Tyr-SCoA. Peaks "a" through "f" represent signature peaks that highlight the successful formation of the CoA conjugate.

*ChemDraw ¹H shift predictions in DMSO-D₆

Fig. S12 Partially assigned ¹H-NMR spectrum of Ac-NH-D-Hpg-D-Hpg-D-Tyr-SCoA. Peaks "a" through "f" represent signature peaks that highlight the successful formation of the CoA conjugate.

Fig. S13 MALDI-TOF-MS spectrum of Ac-NH-D-Hpg-D-Hpg-L-Tyr-SCoA.

Fig. S14 MALDI-TOF-MS spectrum of Ac-NH-D-Hpg-D-Hpg-D-Tyr-SCoA.