Self-assembly of Biosurfactant-inorganic Hybrid Nanoflowers as Efficient Catalysts for Degradation of Cationic Dyes

Jianmei Jiao , Xia Xin *, Xingang Wang, Zengchun Xie, Congxin Xia, Wei Pan

Fig. S1 The structures of (A) Sodium cholate, (B) Sodium deoxycholate, (C) GG4 (D) Rhodamine6G, (E) Methylene blue. (F) Rhodamine B.

Fig. S2 EDX pattern of SC-Cu₃(PO₄)₂ \cdot 3H₂Onanoflowers .

Fig.S3 SEM images of (A, B) SDC-Cu₃(PO₄)₂·3H₂O nanoflowers, (C, D) GG-4-Cu₃(PO₄)₂·3H₂O nanoflowers.

Fig.S4 Nitrogen adsorption–desorption isotherm and the pore size distribution curve (inset) for the $SC-Cu_3(PO_4)_2 \cdot 3H_2O$ nanoflowers.

Fig.S5 Color change of cationic dyes solution over time and the UV-Vis spectrum. RhB; (B) MB;(C)R6G,and (D) comparison of degradation rates for different dye

Fig.S6 SEM images of our catalyst after degredation of dyes.

Fig.S7 Degradation rate of the three dyes calculated by $\ln(C_t/C_0)$ as functions of reaction time.