Supplementary Information

for

$\mathrm{ACu}^{\text {II }}$ complex of emodin improves upon the anticancer activity of the molecule as demonstrated by its performance on HeLa and Hep G2 cells

Bitapi Mandal, Soumen Singha, Sanjay Kumar Dey, Swagata Mazumdar, Sanjay Kumar, Parimal Karmakar, Saurabh Das

Experimental:

Determination of the stoichiometry of the $\mathbf{C u}{ }^{I I}$ complex of emodin $\left(\mathbf{L H}_{3}\right)$
Mole-ratio method:
The concentration of $\mathrm{Cu}(\mathrm{II})$ was constant while emodin was varied. The change in absorbance at 536 nm was plotted against the changing ratio of emodin $\left(\mathrm{LH}_{3}\right)$ to $\mathrm{Cu}(\mathrm{II})$ at a constant metal ion concentration [Fig. S1(a)]. Straight lines were obtained whose intersection provides the stoichiometry of complex formation in solution.

Job's method of continuous variation:
Stoichiometry was also determined by continuously varying the concentration of both the ligand (emodin) and $\mathrm{Cu}(\mathrm{II})$ [Fig. S 1 (b)].

Fig. S1: (a) Mole-ratio plot showing interaction of $\mathrm{Cu}(\mathrm{II})$ with emodin in solution at neutral pH ; (b) Job's plot of continuous variation showing interaction of Cu (II) with emodin at neutral $\mathrm{pH} .\left[\mathrm{NaNO}_{3}\right]=100 \mathrm{mM}$, Temperature $=298 \mathrm{~K}$.

Both methods suggest the formation of a 1:2 metal-ligand complex at neutral $\mathbf{p H}$.

Fig. S2: UV-Vis spectra of emodin and its $\mathrm{Cu}(\mathrm{II})$ complex in DMSO

Analysis of IR spectra:

Fig. S3: IR spectra of emodin

Fig. S4: IR spectrum of $\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{emod})_{2}\right]^{2-}$

Analysis of the IR spectrum of emodin (Fig. S3) and the $\mathrm{Cu}(\mathrm{II})$ complex (Fig. S4) reveals that the sharp peak at $3389 \mathrm{~cm}^{-1}$ for emodin broadens in case of the complex being shifted to $3443 \mathrm{~cm}^{-1}$. The peak for emodin is attributed to -OH stretching due to strong intra-molecular hydrogen bonding for the -OH group at C_{1} and C_{8} with the adjacent carbonyl group at C_{9}. In $\mathrm{Cu}(\mathrm{II})$-emodin, broadening of peak at $3443 \mathrm{~cm}^{-1}$ occurs due to the absence of intramolecular H -bonding between adjacent -OH and $\mathrm{C}=\mathrm{O}$ groups following introduction of the metal ion. Carbonyl stretching was found at $1628 \mathrm{~cm}^{-1}$ for emodin and at $1618 \mathrm{~cm}^{-1}$ for the complex suggestive of the fact that while one carbonyl per ligand is bound to metal ion in the complex, the other carbonyl retains its character. There was significant differences in the region from $1480 \mathrm{~cm}^{-1}$ to $700 \mathrm{~cm}^{-1}$ for emodin and its $\mathrm{Cu}(\mathrm{II})$ complex suggesting complex formation.

Mass Spectrum:

Fig. S5: Mass spectrum of $\left[\mathrm{Cu}{ }^{\mathrm{II}}(\mathrm{emod})_{2}\right]^{2-}$

Analysis of Mass spectrum:

The molecular ion peak was detected at $\mathrm{m} / \mathrm{z}=600.9$ and $601.48\left(\mathrm{~m} / \mathrm{z}_{\text {theo }}=599.48 \& 601.48\right.$ considering ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$ respectively). The peaks at $\mathrm{m} / \mathrm{z}=586.88$ and 574.92 corresponds to
the loss of either one or two methyl groups from the two emodin units in the complex in succession $\left[\mathrm{m} / \mathrm{z}_{\text {theo }}\right.$ being $585.48\left({ }^{63} \mathrm{Cu}\right)$, $587.48\left({ }^{65} \mathrm{Cu}\right)$ and $571.48\left({ }^{63} \mathrm{Cu}\right)$, $\left.573.48\left({ }^{65} \mathrm{Cu}\right)\right]$. Peaks in the region of $\mathrm{m} / \mathrm{z}=525.86$ corresponds to a fragment formed by further loss of one -OH group and one O^{-}unit from each emodin in the complex.

The peak at $\mathrm{m} / \mathrm{z}=393.91$ corresponds to the fragment formed from the molecular ion $(\mathrm{m} / \mathrm{z}=$
601.5) after the portions
 of the two

$$
\mathrm{A} \quad \mathrm{~B}
$$

break away from each
ligands to result in a fragment 393.91 (theoretical $\mathrm{m} / \mathrm{z}=393.5$).

Theoretically, the fragment formation can be shown as

$$
601.5-2(\mathrm{~A})-2(\mathrm{~B})+8=393.5
$$

The peak at $\mathrm{m} / \mathrm{z}=389.12$ is the same fragment as that of 393.91 but with four H atoms less i.e. theoretically $601.5-2(A)-2(B)+8-4=389.5$.

The peak at $\mathrm{m} / \mathrm{z}=409.98$ corresponds to the fragment formed from the molecular ion
($\mathrm{m} / \mathrm{z}=601.5$) after

A
result in a fragments having $\mathrm{m} / \mathrm{z}=409.98$ and 411.98 respectively (theoretical $\mathrm{m} / \mathrm{z}=$ 409.5 and 411.5 respectively) being the isotopic distributions due to ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$. $\mathrm{Cu}^{\text {II }}$ bound to one emodin from which one O^{-}unit has departed were detected at $\mathrm{m} / \mathrm{z}=$ $316.90,317.90$ and $318.99\left(\mathrm{~m} / \mathrm{z}_{\text {theo }}\right.$ being $316.24 \& 318.24$ for ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$ respectively).

Fig. S6: A routine thermo-gravimetric analysis of $\mathrm{Cu}^{\mathrm{II}}(\mathrm{emod})_{2}$

Thermo-gravimetric analysis:

TGA does not show any loss of material till $200^{\circ} \mathrm{C}$ indicating no water of crystallization or presence of coordinated water in the complex which is in accordance with the structure obtained from PXRD data.

EPR spectrum of the complex:

Fig. S7: EPR spectrum of $\mathrm{Cu}^{\mathrm{II}}(\mathrm{emod})_{2}$

Fig. S8: Absorption spectra of emodin in aqueous solution at different $\mathrm{pH} ; \mathrm{pH}$ of each solution is mentioned in the inset of the figure. [Emodin] $=10 \mu \mathrm{M},\left[\mathrm{NaNO}_{3}\right]=0.01 \mathrm{M}$, Temperature $=300 \mathrm{~K}$.

The initial structural model for $\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{emod})_{2}\right]$ that was used to arrive at the structure of the complex from PXRD data is provided below:

Interaction of the compounds with DNA

Binding of the compounds with calf thymus DNA was studied considering the following equilibrium

$$
\begin{equation*}
L+D N A \rightleftharpoons L-D N A \quad K_{d}=\frac{[L][D N A]}{[L-D N A]} \tag{S1}
\end{equation*}
$$

Equation S1 considered in the reverse direction yields a double reciprocal equation (S2).

$$
\begin{equation*}
\frac{1}{\Delta A}=\frac{1}{\Delta A_{\max }}+\frac{K_{d}}{\Delta A_{\max }\left(C_{D}-C_{L}\right)} \tag{S2}
\end{equation*}
$$

Decrease in absorbance $(\Delta \mathrm{A})$ upon titration of the compounds with calf thymus DNA was used to create binding isotherms at different ionic strength of the medium when temperature remained constant and at different temperatures when ionic strength of the medium remained constant [14]. $\Delta \mathrm{A}_{\max }$ is the maximum change in absorbance following interaction of the compounds with
calf thymus DNA. C_{D} denotes the concentration of calf thymus DNA and C_{L} the concentration of the compounds. K_{d} and $\Delta A_{\max }$ were evaluated utilizing Eq. S2.

Change in absorbance following interaction with calf thymus DNA was followed at the $\lambda_{\max }$ of the compounds. A typical double reciprocal plot from where K_{d} and $\Delta A_{\max }$ were evaluated allows us to plot of $\Delta \mathrm{A} / \Delta \mathrm{A}_{\max }$ against concentration of DNA. This was fitted using the non-linear curve fit analysis (Eq. S3 \& S4) and K_{d} was evaluated once again.

$$
\begin{align*}
& K_{d}=\frac{\left[C_{L}-\left(\frac{\Delta A}{\Delta A_{\max }}\right) C_{L}\right]\left[C_{\left.D-\left(\frac{\Delta A}{\Delta A_{\max }}\right) C_{L}\right]}^{\left(\frac{\Delta A}{\Delta A_{\max }}\right) C_{L}}\right.}{\quad C_{L}\left(\frac{\Delta A}{\Delta A_{\max }}\right)^{2}-\left(C_{L}+C_{D}+K_{d}\right)\left(\frac{\Delta A}{\Delta A_{\max }}\right)+C_{D}=0} \tag{S3}
\end{align*}
$$

The plot of $\Delta \mathrm{A} / \Delta \mathrm{A}_{\max }$ against [DNA]/[compounds] provides " n_{b} " the site size of interaction. The overall binding constant $\left(\mathrm{K}^{*}\right)$ was obtained by multiplying $\mathrm{K}_{\text {app }}$ that was obtained from Eq. S2 and Eqs. S3 \& S4) with " n_{b} ". A modified form of the original Scatchard equation (Eq. S5) [5] was also used to analyze the titration results. Overall binding constant (K^{*}) and binding stoichiometry " n " $\left(=n_{b}{ }^{-1}\right)$ were obtained directly from the equation $[1,6]$.

$$
\begin{equation*}
r / C_{f}=K^{*}(n-r) \tag{S5}
\end{equation*}
$$

$r=C_{b} / C_{D}$ where, " C_{b} " is the concentration of bound compound, " C_{D} " the concentration of calf thymus DNA and " C_{f} " the concentration of free compound in solution. K^{*} is the intrinsic or overall binding constant of a compound binding to a substrate. " n " is the binding stoichiometry
in terms of the number of compound bound per nucleotide while " n_{b} " reciprocal of " n " denotes binding site size in terms of the number of nucleotide bound to a compound.

Fig. S9: Absorption spectra of $\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{emod})_{2}\right]^{2-}$ in the absence (1) and presence of calf thymus DNA. Spectra were recorded at different ionic strengths of the medium showing a gradual decrease in absorbance upon adding DNA to an aqueous solution of the compound. $\left[\left\{\mathrm{Cu}^{\mathrm{II}}(\mathrm{emod})_{2}\right\}^{2-}\right]=50 \mu \mathrm{M} ;[\mathrm{NaCl}]=120 \mathrm{mM}$; [Tris buffer $]=20 \mathrm{mM}, \mathrm{T}=$ 298 K.

Fig. S10: Linear dependence of pK values of Emodin with a variation in the ionic strength of the medium at $298 \mathrm{~K} ;[$ Emodin $]=10 \mu \mathrm{M}$.

References:

1) P. S. Guin, S. Das, P. C. Mandal, J. Inorg. Biochem. 103 (2009) 1702.
2) S. Mukherjee, P. Das, S. Das, J. Phy.Org. Chem. 25 (2012) 385.
3) S. Roy, R. Banerjee, M. Sarkar, J. Inorg. Biochem. 100 (2006) 1320.
4) S. Chakraborti, B. Bhattacharyya, D. Dasgupta, J. Phys. Chem. B 106 (2002) 6947.
5) G. Scatchard, Ann. N. Y. Acad. Sci. 51 (1949) 660.
6) P. Das, P. S. Guin, P. C. Mandal, M. Paul, S. Paul, S. Das, J. Phy.Org. Chem. 24 (2011) 774.
7) S. Das, A. Saha, P. C. Mandal, Talanta 43 (1996) 95.
8) H. Beraldo, A. G. Suillerot, L. Tosi, Inorg. Chem. 22 (1983) 4117.
9) R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.
10) N. M. O’Boyle, A. L. Tenderholt, K. M. Langner, J. Comp. Chem., 2008, 29, 839.
