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Fig. S1. SEM image (a) and DRIFTs (b) of carbon black at room temperature.



Fig. S2. EDS mapping of different elements of Ag/HZSM-5.



Fig. S3. Schematic of Diffuse Reflectance Infrared Fourier Transform spectroscopy (DRIFTs).

   Diffuse Reflectance Infrared Fourier Transform spectroscopy (DRIFTs) measurements were 

performed on an EQUINOX 55 (Bruker, Germany) equipped with a liquid nitrogen cooled MCT 

detector. N2 (99.99% purity) is used as chamber blowing gas at a rate of 100 ml/min. Ex-situ 

DRIFTs spectra were collected at 25 oC in the flowing N2 ,  the samples were kept in the flowing 

N2 for 30 min as a pretreatment at 25 oC. In-situ DRIFTs spectra were collected from 150 to 375 

oC with an interval of 1 oC in a sub-chamber with flowing synthetic air (100 ml/min), the 

temperature was increased at the rate of 1 oC /min and kept at 375 oC for 2 h. The samples were 

conducted in the synthetic air at 50 oC for 2 h as a pretreatment before measuring. All of the 

spectra, determined at a resolution of 4 cm-1, were analyzed by OPUS (Bruker, Germany) 

software.



Fig. S4. DRIFTs spectra of HZSM-5 (red line) and Ag /HZSM-5 (green line) at room 

temperature.

                     



                        

                     Table S1. Infrared parameters of various modes of HZSM-5. 

HSZ891HOA(Si/Al= 1500)

Wavenumbers (cm-1) Modes1-5

3738 Si-OH located at the external 
surface

3682 γ(OH)

3330 H-bonded OH group

2975 ν(CH)

1996, 1881 lattice vibrations

1642 δ(HOH)

1369 δ(OH)

1217, 811 External linkages between 
tetrahedral

1077 Internal vibrations of [Si, Al]O4



Fig. S5. TG-DTA curves of the soot combustion with x Ag/HZSM-5 catalysts in TC and LC 

modes, (a) 2%, (b) 4.5% and (c) 8%.



Fig. S6. In-situ DRIFTs spectra of soot oxidation with 4.5% Ag/HZSM-5 with increasing 

temperature. All the spectra were divided by the spectrum measured at 149 oC.



Fig. S7. STEM images and size distribution of Ag particles of Ag/HZSM-5 after high 

temperature (800 oC) treatment.



   

Fig. 8. In-situ Ag K–edge absorption XANES spectra after normalization for M-TC (a)
 and M-LC (b) from 25 oC to 250 oC.



Table S2. Catalytic performances for soot combustion with catalysts x Ag /HZSM-5 for M-

TC and M-LC.

CB oxidation performance (oC)
b

M-TC M-LC
Catalysts

xAg/HZSM-5
a

T
ig

T
max

T
ig

T
max

2% 308 414 357 534

4.5% 300 366 339 533

8% 307 379 347 563

a
 x is the weight percentage of silver in catalyst Ag/HZSM-5;

b
 Definition of T

ig
 (ignition temperature of soot combustion) and T

max
 (peak temperature 

of DTA curves); 



 Table S3. Catalytic performance for soot oxidation with various catalysts published already.

Catalysts Experimental 
method

Tso
 (oC) comments Ref.

Ag/CeO2, Ag/ZrO2，

Ag/Al2O3

(1-10 wt%)

IW impregnation,
Cal. 500 oC  for 3 h

334–345 oC (T50 in TC 
mode)a,

460–436  oC  (T50 in LC 
mode),

Soot /cata.=1 : 20,
T50 (50% of 
weight loss)

6

Cu/Mn–Ce mixed 
oxides

 

sol–gel method
Cal. 500 °C for 3 h

356–390 oC (Tmax in TC 
mode)b,

503–553 oC (Tmax in LC mode),

Soot /cata.=1 : 10, 
Tm (max oxidation 
rate temp.)

7

Pt/MOx (MOx = TiO2, 
ZrO2, Al2O3)

IW impregnation,
Cal. 400-600 oC for 

3 h.

410–540 oC (T50)
b,

 

Soot /cata.=1 : 20,
T50 (50% of weight 

loss)

8

Ag-loaded sepiolite–
Zr–K–O

IW impregnation,
Cal. 600 oC for 1 h.

490 oC (T50 in TC mode)a,
 

Soot /cata.=1 : 5,
T50 (peak temp. of 

DTA curve) 

9

Ag(1-15 
wt%)/perovskite

impregnation,
Cal. 500 oC for 4 h.

398–493 oC (T50)
b,

 
Soot /cata.=1 : 10

T50 (50% 
conversion rate of 

soot)

10

ZSM5, PtZSM5, PtAl IW impregnation,
Cal. 500-585 oC  

for 2 h

440–563 oC (T50)
b,

 
Soot /cata.=1 : 10

 
11

perovskite Electrospinning 
technique,

Cal. 800 oC  for 6 h

490–505 oC (Tmax, L), 
585–597 oC  (Tmax, H), LC modea

Soot /cata.=1 : 19 12

Co, K and/or Ba 
supported on MgO, 

La2O3 and CeO2

impregnation,
Cal. 400 oC and 700 

oC for 4 h

350–400 oC (Tmax)
b Soot /cata.=1 : 20,

  
13

Ag-CeO2 Co-precipitation
method,

Cal. 500 oC for 5 h.

315–480 oC (Tmax in TC mode),
376–596 oC (Tmax in LC mode)b,

Soot /cata.=1 : 19,
 

14

Ag/HZSM-5 impregnation,
Cal. 500 oC for 5 h

366 oC (Tmax in TC mode),
533 oC (Tmax in LC mode)a,

Soot /cata.=1 : 19 this 
work



MnOx-CeO2 Citric acid complex 
method.

Cal. 550 oC for 5 h

299–387 oC
 (TCO2, max in LC 

mode)a

Soot /cata.=1 : 9,
Two types O-vacancies favored 
to the migration and 
transformation of active species

15

Manganese oxide 
(MnO2, Mn2O3 

and Mn3O4)

Commercially
obtained or FSP 

method

305–390 oC
 (TCO2, max in LC 

mode)a

A strong contribution of bulk 
oxygen (ca. 60%) occurred for 
tight as well as loose contact.

16

MnCeO Hydrothermal 
method,  
impregnation method

MnOx/CeO2 nanorod  
317 oC (T50 in TC 
mode)a

 MnOx/CeO2  nanorods exhibits 
better catalytic activity due to its 
larger surface area and higher 
oxygen release rate

17

Ag/CexNd1-xO2 Hydrothermal 
method,  

394–458 oC
 (TCO2, max in LC 

mode)a

Soot /cata.=1 : 10,
Introduction of Nd can lower 
soot oxidation activity but 
improve the catalysts’ thermal 
stability effectively 

18

Co-CeO2 Sol-gel method. 335 oC
(without H2O, TCO2, 

max in TC mode)a, 
310 oC

(with H2O, TCO2, 

max in TC mode)a

Co in Co-Ce-Ox can improve its 
catalytic activity for NO 
oxidation.
Ce in Co-Ce-Ox can promote its 
capacity for NO2 storage.

19

a Temperature of soot oxidation measured by temperature programmed combustion; b Temperature of soot 
oxidation measured by thermogravimetric methods.  
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