Supporting Information

for

"A micro-solid phase extraction in glass pipette packed with amino-functionalized silica for rapid analysis of petroleum acids in crude oils"

Gang-Tian Zhu,*, ^a Sheng He,^a Xiao-Mei He,^b Shu-Kui Zhu,^c Yu-Qi Feng^b

^a Key Laboratory of Tectonics and Petroleum Resources (Ministry of Education), China University of Geosciences, Wuhan 430074, P.R. China. E-mail: zhugangtian@163.com

^b Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China.
 ^c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China

Figure S1. Photographic image of the glass pipette micro-SPE device.

Figure S2. Total ion chromatograms of solutions obtained from washing different vessels with ethyl acetate (EtAc) or hexane followed by derivatization with MTBSTFA. The names of different groups were defined as "vessel-solvent". For instance, "glass pipette-EtAc" represents the result produced by washing glass pipette with EtAc. The marks "1#" and "2#" represent different manufacturers.

Figure S3. Effect of volume of MTBSTFA on derivatization efficiency in TFA/EtAc(1/99,v/v).

Figure S4. Effect of reaction time on derivatization efficiency.

Figure S5. Effect of sampling cycle (a) and eluting cycle (b) on extraction efficiency.

Analytes	Chemical structure	Mw	t _R	Quantifier (m/z)
СНА	ОН	128	9.39	185
t-ECHA	ОН	156	12.70	213
t-iPCHA	ОН	170	14.48	227
t-BCHA	ОН	184	16.34	241
t-PCHA		198	18.00	255
DA	ОН	172	13.99	229
LA	ОН	200	17.46	257
BCHCA	ОН	140	10.89	197
NACA	ОН	166	14.13	223
ACA	О_ОН	180	16.62	237
AAA	ОН	194	18.19	251
NAA (IS)	ОН	186	19.05	243

Table S1. Chemical structures, molecular weights (Mw), retention times (t_R) and target ions for the GC-MS analysis of the petroleum acids after derivatization.

	Peak Area (10 ⁶)			
	Hexadecanoic Acid	Octadecanoic Acid		
glass vial-hexane (control)	0.56	0.28		
glass pipette-EtAc	0.75	0.33		
glass pipette-hexane	0.49	0.24		
plastic centrifuge tube 1#-EtAc	269.23	292.63		
plastic centrifuge tube 1#-hexane	238.21	268.43		
plastic centrifuge tube 2#-EtAc	1032.18	787.38		
plastic centrifuge tube 2#-hexane	911.45	766.48		
medical syringe 1#-EtAc	1379.70	1085.12		
medical syringe 1#-hexane	289.35	374.50		
medical syringe 2#-EtAc	805.72	788.52		
medical syringe 2#-hexane	223.04	328.70		
plastic pipette tip 1#-EtAc	72.04	88.50		
plastic pipette tip 1#-hexane	78.69	88.07		
plastic pipette tip 2#-EtAc	57.83	52.44		
plastic pipette tip 2#-hexane	27.45	32.97		

 Table S2. Peak areas of detected hexadecanoic acid and octadecanoic acid after derivatization.

The names of different groups were defined as "vessel-solvent". For instance, "glass pipette-EtAc" represents the result produced by washing glass pipette with ethyl acetate. The marks "1#" and "2#" represent different manufacturers.

	СНА	t-ECHA	t-iPCHA	t-BCHA	t-PCHA	DA	LA	BCHCA	NACA	ACA	AAA
Recovery	76	83	84	91	89	74	89	76	79	83	92
(RSD, %; n=5)	(5.4)	(3.8)	(6.3)	(5.9)	(4.2)	(4.8)	(6.1)	(3.4)	(2.9)	(5.7)	(5.6)

Table S3. Recoveries of petroleum acids in crude oil with the micro-SPE method.

Ameliator	Linear dynamic range	ŀ	Regression lin	LODs	LOQs	
Analytes	(ng/g)	Slope	Intercept	<i>R</i> value	(ng/g)	(ng/g)
СНА	20-5000	0.0010	-0.0063	0.9998	6	20
t-ECHA	10-5000	0.0011	-0.0033	0.9993	3	9
t-iPCHA	10-5000	0.0010	-0.0051	0.9994	3	10
t-BCHA	10-5000	0.0009	-0.0038	0.9997	2	7
t-PCHA	10-5000	0.0011	-0.0046	0.9986	3	10
DA	10-5000	0.0012	0.0038	0.9996	2	7
LA	10-5000	0.0010	0.0014	0.9991	2	6
BCHCA	10-5000	0.0020	0.0062	0.9984	3	9
NACA	10-5000	0.0014	0.0176	0.9983	3	9
ACA	10-5000	0.0015	0.0132	0.9997	3	10
AAA	10-5000	0.0010	0.0006	0.9993	3	10

Table S4. Calibration curves, LODs and LOQs of petroleum acids.