the supplemental information

Tuning the electronic and magnetic properties of penta-graphene by

using hydrogen atom: a theoretical study

Lin-Lin Liu,^{ab} Ying Wang,^{ab} Chun-Ping Chen,^{ab} Hong-Xia Yu,^{ab} Lu-Si Zhao^{ab} and Xiao-Chun Wang^{a,b*}

a. Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, China
b. Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University), Changchun, 130012, China
*Corresponding author: Xiao-Chun Wang
Email: wangxiaochun@jlu.edu.cn

xyz coordinates of the M-PG system

M-PG

1.00000000000000

	3.6418411732000000				0 0.000000000000000					0.0000000000000000								
	0.0000000000000000000000000000000000000				00	3.6418411732000000				(0.00000000000000000							
	0.00000000000000000				00	0.0000000000000000000000000000000000000				14.8981475830000001						1		
(2	Н																
	6		1															
Sele	ctive	e dy	nam	ics														
Dire	ct																	
0.	000	000	0000	00000	00	0.000	00000	00000	0000	0.13	3333	3402	2648	3407		F	F	F
0.	506	385	2271	.88999	99	0.493	63406	38130)332	0.13	3400	9758	3717	7443		т	т	т
0.	371	342	7554	24429	91	0.126	95000	30726	5221	0.093	3416	6026	5962	2586		т	т	т
0.	633	594	9660	67768	84	0.864	69215	98744	1797	0.093	3408	2233	3893	3463		т	т	т
0.	150	164	3157	34159	90	0.643	45465	14752	1176	0.18	7543	8463	1454	1735		т	т	т
0.	863	089	3054	21148	84	0.356	23864	96954	4701	0.178	8807	9300	0943	3508		т	т	т
0.	228	099	5891	74689	98	0.722	07784	89712	2885	0.25	6428	3652	2329	9493		т	т	т
				c														

xyz coordinates of the WM-PG system

WM-PG

1.00000000000000

	3.641	84117320000	00	0.0000000	000000	0.00000000000000000					
	0.000	00000000000	00	3.6418411	732000	0000	0.0000000000000000000000000000000000000				
	0.000	00000000000	00	0.00000000000000000			14.8981475830000001				
C	: н										
	6	1									
Seleo	tive dy	rnamics									
Direc	t										
0.0	000000	0000000000	0.000	0000000000	0000	0.13333	334026	48407	F	F	F
0.5	507295	9346623359	0.492	905945205	5385	0.13339	783257	03331	т	т	Т
0.3	371689	3767638944	0.126	664237768	5214	0.09353	485849	92923	т	т	т
0.0	533838	3833388567	0.864	503260953	8230	0.09352	715235	25327	т	т	Т
0.:	150093	8887586558	0.642	981853021	9454	0.18766	600272	12440	т	т	т
0.8	363334	8107751255	0.356	099284481	0484	0.17854	664035	41442	т	т	т

0.2282041840795452 0.7223486956989560 0.2564569206659971 T T

т т Т т т

Т

The methodology to obtain the STM images

It works like this:

1) Relax.

2) Calculate CHGCAR and W***ECAR for the relaxed structure.

3) Generate PARCHG --- partial density charge using the CHGCAR and W***ECAR.

PARCHG has the same format as CHGCAR. It is a density for a certain energy range.

It is calculated by setting LPARD=.TRUE.

The decisive parameters are NBMOD and EINT.

If NBMOD=-3 (the most sensible setting), then EINT contains an energy interval with respect to Fermi energy, for which the partial density will be evaluated.

For more details, see the pardens.F file.

Thus, the typical setup for generating PARCHG for STM is: LPARD=.TRUE. NBMOD=-3 EINT=-0.1 0.1 (plus other standart INCAR settings)

As soon as you have PARCHG, you can calculate the STM images either by showing one plane of the PARCHG (constant distance mode) or showing some isosurface (constant current mode).

In our group an utility th_stm was used together with the data explorer (www.opendx.org).

However, I just finished working on the STM applet for p4vasp and it will be released soon (maybe this week).

Fig. S1 Electronic band structure of the PG sheet. The arrow denotes the spin-polarized direction. The Fermi level is shifted to 0 eV.

Electronic band structures for PG sheet is depicted in Fig. S1. It is seen that the calculated band gap of PG is around 2.22 eV, which is in excellent agreement with 2.24 eV of B. Rajbanshi et al.¹ The Fermi level is set at 0 eV. The paired spin-up and spin-down channels of the band structures imply that the PG is still a nonmagnetic sheet. The energy of sub-VBM on the M-Γ path is very close to that of the true VBM on the Γ-X path, and the CBM is located on the M-Γ path, thus PG can be considered as a quasi-direct-band-gap semiconductor.

Fig. S2 The spin-polarized LDOS of the PG sheet. The positive and negative LDOS denote the spin-up and spin-down states, respectively. The vertical dashed line indicates the Fermi level.

The spin-polarized LDOS of the PG sheet shown in Fig. S2. The electronic states near the Fermi level primarily originate from the sp² hybridized C_2 and C_3 atoms. And the spin-up and spin-down DOS of the C_1 , C_2 , C_3 orbitals and the total DOS are symmetric and induce no magnetic moments.

1. B. Rajbanshi, S. Sarkar, B. Mandal and P. Sarkar, Carbon, 2016, 100, 118-125.