Electronic Supplementary Information

A new azobenzene liquid crystal involving chalcone and ester linkages
Xueyou Zhu, Fengnan Yin, Haiying Zhao*, Shufeng Chen and Zhanxi Bian
Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China. E-mail: hyzhao@imu.edu.cn

Scheme S1 Synthesis of compounds VIa-VIe

1-(4-((4-hydroxyphenyl)diazenyl)phenyl)ethanone IX: To 10 mmol of p-acetylphenylamine, 2.7 mL of concentrated hydrochloric acid and 20 mL of water were added. The mixture was placed in the ice bath. To the cooled mixture, a solution of 10 mmol of sodium nitrite in 3 mL of water was added dropwise and the resulting solution was stirred at a temperature between 0 and $5^{\circ} \mathrm{C}$ within 15 min . Subsequently, the solution containing 10 mmol of phenol in 6 mL of methanol was added dropwise. The reaction was stirred for 30 min and was neutralized with sodium acetate. After the temperature was raised to room temperature, the mixture was stirred for 1 h . The product was filtered, washed with large amount of water and dried under vacuum. Yield 80%, m.p. $191-192{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.16$ (petroleum ether:ethyl acetate $=5: 1$); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}\right)(\delta$ ppm): $10.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.13\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.91\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.97\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Aromatic aldehyde IIIV (0.1 mol) and IX (0.12 mol) were dissolved in 5 mL of anhydrous ethanol, to which the solution of $\mathrm{KOH}(0.4 \mathrm{~g}, 7.14 \mathrm{mmol})$ in 1 mL of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise at room temperature. The reaction mixture was stirred at room temperature for 4 h , and then neutralized with dilute HC 1 . The aqueous phase was extracted with EtOAc, and the combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}, 5 \% \mathrm{NaHCO}_{3}$ solution and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was subjected to flash silica gel column chromatography with benzene / EtOAc $(40: 1, \mathrm{~V}: \mathrm{V})$ as eluent. The second fraction was the desired product VI.

VIa: yield 63%, m.p. $204-206{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.43$ (benzene:ethyl acetate $=10: 1$); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}\right)(\delta$ ppm): $10.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.25\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.94\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.73(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.51(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.98\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 4.90$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{FcH}$), $4.59(\mathrm{~s}, 2 \mathrm{H}, \mathrm{FcH}), 4.22(\mathrm{~s}, 5 \mathrm{H}, \mathrm{FcH})$.

VIb: yield 61.8%, m.p. $185-187{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.39$ (Benzene:Ethyl acetate $=10: 1$); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{DMSO})(\delta$
ppm): $10.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.20\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.92\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.62(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.38(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.98\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 4.81$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{FcH}), 4.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{FcH}), 4.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{FcH}), 4.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{FcH}), 4.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{FcH}), 3.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{FcH})$, $3.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{FcH}), 2.14-1.85\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right)$.
VIc: yield 66%, m.p. $192-198{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.167$ (benzene:ethyl acetate $=40: 1$); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{DMSO})(\delta$ ppm): $10.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.41\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.09(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 8.04-7.96(\mathrm{~m}, 4 \mathrm{H}$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.96-7.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.86(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.57-7.52\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.07-$ $7.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.
VId: yield 65%, m.p. 203-208 ${ }^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.42$ (benzene:ethyl acetate $=20: 1$); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}\right)(\delta$ ppm): $10.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.28\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.97(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.87\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.82(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{TpH}), 7.74(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{TpH}), 7.63$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{TpH}), 6.98\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.
VIe-8: yield 55%, m.p. $159 \sim 160^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.32$ (Ethyl acetate: Petroleum ether $=1: 4$) , ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 10.50(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{t}, J=9.0 \mathrm{~Hz}, 5 \mathrm{H}), 7.77(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.01(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75 \sim 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.43 \sim 1.35(\mathrm{~m}, 2 \mathrm{H})$, $1.29 \sim 1.25(\mathrm{~m}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) δ 188.66, 162.22, 161.43, 154.87, $145.88,144.86,139.17,131.40,130.22,127.59,125.84,122.72,119.78,116.56,115.30,68.17,40.16,39.99$, 39.83, 39.66, 39.49, 31.72, 29.32, 29.15, 29.07, 25.96, 22.56, 14.42.HRMS, m/z: Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}$: 455.2329 [M-H] $^{-}$found: 455.2340.

VIe-10, Yield 55\% m.p. $153 \sim 154^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.35$ (Ethyl acetate: Petroleum ether $=1: 4$), ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 10.41(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.89 \sim 7.75(\mathrm{~m}, 5 \mathrm{H}), 7.71(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.73 \sim 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.29 \sim 1.20(\mathrm{~m}, 17 \mathrm{H}), 0.88$ $(\mathrm{t}, J=6.7 \mathrm{~Hz} .3 \mathrm{H})$. HRMS, m/z: Calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3}: 483.2642[\mathrm{M}-\mathrm{H}]{ }^{-}$found: 483.2641 .
VIe-12, yield 55\%, m.p. $149 \sim 150{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.36$ (Ethyl acetate: Petroleum ether $=1: 4$) ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90 \sim 7.85(\mathrm{~m}, 5 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75 \sim 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.32 \sim 1.25(\mathrm{~m}, 17 \mathrm{H})$, $0.85(\mathrm{t}, J=6.5 \mathrm{~Hz} .3 \mathrm{H})$. HRMS, m/z: Calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{3}$: $511.2955[\mathrm{M}-\mathrm{H}]^{-}$found: 511.2943.
VIe-14, yield 55\%, m.p. $148 \sim 149^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.38$ (Ethyl acetate: Petroleum ether $=1: 4$), ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 10.56(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.98 \sim 7.88(\mathrm{~m}, 5 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{dd}, J=14.5$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.41 \sim 1.27(\mathrm{~m}, 20 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{HRMS}, \mathrm{m} / \mathrm{z}$: Calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3}$: 539.3268 [M-H] found: 539.3218.

Table S1 UV-vis absorption data of selected compounds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Compd.	Absorption $\lambda_{\max } / \mathrm{nm}\left(\log \varepsilon / \mathrm{Lcm}^{-1} \mathrm{~mol}^{-1}\right)$		
Ia-8	$261(5.45)$	$347(5.67)$	$523(4.65)$
Ib-8	$261(5.45)$	$346(5.66)$	$535(4.82)$
Ic-8	$263(5.47)$	$345(5.73)$	-
Id-8	$266(5.41)$	$358(5.70)$	-
IIc-8	$266(4.44)$	$357(4.51)$	-
IId-8	$282(2.30)$	$357(4.65)$	-
III-8	$266(4.44)$	$356(4.51)$	-
IV-8	$262(4.42)$	$357(4.67)$	-
V	$259(4.71)$	$350(4.69)$	-

Table S2 Phase transition temperatures and associated enthalpies of compounds I-III.

Compd.	Phase transitions ${ }^{a}{ }^{\circ} \mathrm{C}\left(\Delta H / \mathrm{kJ} \mathrm{mol}^{-1}\right)$		
	First heating	Second heating	First cooling
Ia-8	$\begin{aligned} & \mathrm{C}_{1} 162.3 \text { (11.2) } \mathrm{C}_{2} 187.8 \\ & (38.2) \mathrm{I} \end{aligned}$	$\mathrm{C}_{1} 163.7$ (-7.6) $\mathrm{C}_{2} 187.9$ (39.7) I	I 167.2 (-30.9) C
Ia-10	C 183.6 (74.4) I	$\mathrm{C}_{1} 128.1$ (-4.2) $\mathrm{C}_{2} 170.8$ (27.8) I	$\begin{aligned} & \text { I } 147.4(-4.0) \mathrm{C}_{2} 139.8 \\ & (-4.8) \mathrm{C}_{1} \end{aligned}$
Ia-12	$\begin{aligned} & \mathrm{C}_{1} 105.8(26.9) \mathrm{C}_{2} 165.4 \\ & (6.1) \mathrm{C}_{3} 175.6(27.4) \mathrm{I} \end{aligned}$	$\mathrm{C}_{1} 107.9$ (1.4) $\mathrm{C}_{2} 173.5$ (34.0) I	$\begin{aligned} & \text { I } 162.8(-36.8) \mathrm{C}_{2} 98.0 \\ & (-1.6) \mathrm{C}_{1} \end{aligned}$
Ia-14	$\begin{aligned} & \mathrm{C}_{1} 101.8(4.7) \mathrm{C}_{2} 126.7 \\ & (20.3) \mathrm{C}_{3} 168.7(28.3) \mathrm{I} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{1} 105.2(4.1) \mathrm{C}_{2} 165.3(9.2) \mathrm{C}_{3} \\ & 172.5(2.5) \mathrm{I} \end{aligned}$	$\begin{aligned} & \text { I } 160.1(-26.6) \mathrm{C}_{2} 97.5 \\ & (-5.5) \mathrm{C}_{1} \end{aligned}$
Ia-16	$\begin{aligned} & \mathrm{C}_{1} 106.5 \text { (15.3) } \mathrm{C}_{2} 174.9 \\ & (41.8) \mathrm{I} \end{aligned}$	$\mathrm{C}_{1} 108.7$ (5.6) $\mathrm{C}_{2} 168.7$ (27.1) I	$\begin{aligned} & \text { I } 158.4 \text { (28.5) } \mathrm{C}_{2} 102.4 \\ & (6.9) \mathrm{C}_{1} \end{aligned}$
Ib-8	$\begin{aligned} & \mathrm{C}_{1} 149.3(38.2) \mathrm{C}_{2} 154.3 \\ & (1.5) \mathrm{I} \end{aligned}$	C 143.5 (36.3) I	I $80.4(-6.2) \mathrm{Tg}$
Ib-12	$\begin{aligned} & \mathrm{C}_{1} 99.6(9.5) \mathrm{C}_{2} 149.1 \text { (44.2) } \\ & \mathrm{I} \end{aligned}$	$\mathrm{C}_{1} 108.9$ (-5.5) $\mathrm{C}_{2} 148.1$ (39.8) I	I 108.8 (-30.5) C
IIc-8	C 73.46 (35.1) I	C 113.89 (13.8) I	I 7.78 (-12.4) C
IIc-14	$\begin{aligned} & \mathrm{C}_{1} 53.81(7.1) \mathrm{C}_{2} 72.68 \\ & (65.7) \mathrm{I} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{1} 17.13(11.6) \mathrm{C}_{2} 68.09(22.1) \mathrm{C}_{3} \\ & 73.10(41.7) \mathrm{I} \end{aligned}$	$\begin{aligned} & \text { I } 57.25(-60.6) C_{1} 11.02 \\ & (-10.5) C_{2} \end{aligned}$
IId-8	$\mathrm{C}_{1} 94.07$ (50.6) I	$\begin{aligned} & \mathrm{C}_{1} 26.12(14.9) \mathrm{C}_{2} 46.53(-32.5) \\ & \mathrm{C}_{3} 98.08(49.4) \mathrm{I} \end{aligned}$	I 20.82 (-15.7) C_{1}
III-8	$\begin{aligned} & \mathrm{C}_{1} 135.24(20.6) \mathrm{C}_{2} 184.84 \\ & (45.1) \mathrm{I} \end{aligned}$	C 185.03(42.3) I	171.02 (43.6) C
III-14	$\begin{aligned} & \mathrm{C}_{1} 105.56(14.7) \mathrm{C}_{2} 136.22 \\ & (11.0) \mathrm{C}_{3} 168.87(35.2) \mathrm{C}_{4} \\ & 173.58(10.7) \mathrm{I} \end{aligned}$	$\mathrm{C}_{1} 148.34$ (2.5) $\mathrm{C}_{2} 170.09$ (44.2) I	$\begin{aligned} & \text { I 165.73(-42.6) C } 147.49 \\ & (-2.0) \mathrm{C}_{2} \end{aligned}$

Fig. S1 TG curves of Ia-Id

Fig. S2 XRD patterns of compound IV-10 (left) and V (right) on cooling. Asterisks in the spectrum show the alumina from the sample cell holder.

Fig. S3 ${ }^{1} \mathrm{H}$ NMR of compound IX

Fig. S4 ${ }^{1} \mathrm{H}$ NMR of compound VIa

Fig. S5 ${ }^{1} \mathrm{H}$ NMR of compound VIb

Fig. S6 ${ }^{1} \mathrm{H}$ NMR of compound VIc

Fig. S $7{ }^{1} \mathrm{H}$ NMR of compound VId

Fig. S8 ${ }^{1} \mathrm{H}$ NMR of compound Ia-8

Fig. S9 ${ }^{1} \mathrm{H}$ NMR of compound Ia-10

Fig. S $10{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{I a}-\mathbf{1 2}$

Fig. S11 ${ }^{1} \mathrm{H}$ NMR of compound Ia-14

Fig. S $12{ }^{1} \mathrm{H}$ NMR of compound Ia-16

Fig. S13 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{I b - 8}$

Fig. S14 ${ }^{1} \mathrm{H}$ NMR of compound Ib-12

Fig. S $15{ }^{1} \mathrm{H}$ NMR of compound Ic-8

Fig. S $16{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{I c} \mathbf{- 1 2}$

Fig. S $17{ }^{1} \mathrm{H}$ NMR of compound Ic-14

Fig. S18 ${ }^{1} \mathrm{H}$ NMR of compound Id-8

Fig. S19 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{I d}-\mathbf{1 2}$

Fig. S20 ${ }^{1} \mathrm{H}$ NMR of compound Id-14

Fig. S2 $2{ }^{1} \mathrm{H}$ NMR of compound IIc-8

Fig. S22 ${ }^{1} \mathrm{H}$ NMR of compound IIc-14

Fig. S23 ${ }^{1} \mathrm{H}$ NMR of compound IId-8

Fig. S24 ${ }^{1} \mathrm{H}$ NMR of compound III-8

Fig. S25 ${ }^{1} \mathrm{H}$ NMR of compound III-14

Fig. S26 ${ }^{1} \mathrm{H}$ NMR of compound IV-8

Fig. S27 ${ }^{1} \mathrm{H}$ NMR of compound IV-10

Fig. S28 ${ }^{1} \mathrm{H}$ NMR of compound IV-12

Fig. S29 ${ }^{1}$ H NMR of compound IV-14

Fig. S30 ${ }^{1} \mathrm{H}$ NMR of compound \mathbf{V}

