Electronic Supplementary Information

A new azobenzene liquid crystal involving chalcone and ester linkages

Xueyou Zhu, Fengnan Yin, Haiying Zhao*, Shufeng Chen and Zhanxi Bian

Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China. E-mail: hyzhao@imu.edu.cn

Scheme S1 Synthesis of compounds VIa-VIe

1-(4-((4-hydroxyphenyl)diazenyl)phenyl)ethanone **IX**: To 10 mmol of *p*-acetylphenylamine, 2.7 mL of concentrated hydrochloric acid and 20 mL of water were added. The mixture was placed in the ice bath. To the cooled mixture, a solution of 10 mmol of sodium nitrite in 3 mL of water was added dropwise and the resulting solution was stirred at a temperature between 0 and 5 °C within 15 min. Subsequently, the solution containing 10 mmol of phenol in 6 mL of methanol was added dropwise. The reaction was stirred for 30 min and was neutralized with sodium acetate. After the temperature was raised to room temperature, the mixture was stirred for 1 h. The product was filtered, washed with large amount of water and dried under vacuum. Yield 80%, m.p. 191-192 °C, $R_f = 0.16$ (petroleum ether:ethyl acetate = 5:1); ¹H NMR (500 MHz, DMSO) (δ ppm): 10.46 (s, 1H, OH), 8.13 (d, J = 8.5 Hz, 2H, C₆H₄), 7.91 (d, J = 8.5 Hz, 2H, C₆H₄), 7.86 (d, J = 9.0 Hz, 2H, C₆H₄), 6.97 (d, J = 9.0 Hz, 2H, C₆H₄), 2.64 (s, 3H, CH₃).

Aromatic aldehyde **IIIV** (0.1 mol) and **IX** (0.12 mol) were dissolved in 5 mL of anhydrous ethanol, to which the solution of KOH (0.4 g, 7.14 mmol) in 1 mL of H_2O was added dropwise at room temperature. The reaction mixture was stirred at room temperature for 4 h, and then neutralized with dilute HC1. The aqueous phase was extracted with EtOAc, and the combined organic phases were washed with H_2O , 5% NaHCO₃ solution and H_2O , dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was subjected to flash silica gel column chromatography with benzene / EtOAc (40:1, V:V) as eluent. The second fraction was the desired product **VI**.

VIa: yield 63%, m.p. 204-206 °C, $R_f = 0.43$ (benzene:ethyl acetate = 10:1); ¹H NMR (500 MHz, DMSO) (δ ppm): 10.49 (s, 1H, OH), 8.25 (d, J = 7.0 Hz, 2H, C_6H_4), 7.94 (d, J = 7.0 Hz, 2H, C_6H_4), 7.88 (d, J = 7.0 Hz, 2H, C_6H_4), 7.73 (d, J = 15.0 Hz, 1H, CH), 7.51 (d, J = 15.0 Hz, 1H, CH), 6.98 (d, J = 7.0 Hz, 2H, C_6H_4), 4.90 (s, 2H, FcH), 4.59 (s, 2H, FcH), 4.22 (s, 5H, FcH).

VIb: yield 61.8%, m.p. 185-187 °C, $R_f = 0.39$ (Benzene:Ethyl acetate = 10:1); ¹H NMR (500 MHz, DMSO) (δ

ppm): 10.48 (s, 1H, OH), 8.20 (d, *J* = 8.5 Hz, 2H, C₆H₄), 7.92 (d, *J* = 8.5 Hz, 2H, C₆H₄), 7.87 (d, *J* = 9.0 Hz, 2H, C₆H₄), 7.62 (d, *J* = 15.0 Hz, 1H, CH), 7.38 (d, *J* = 15.0 Hz, 1H, CH), 6.98 (d, *J* = 8.8 Hz, 2H, C₆H₄), 4.81 (s, 1H, FcH), 4.69 (s, 1H, FcH), 4.46 (s, 1H, FcH), 4.34 (s, 1H, FcH), 4.30 (s, 1H, FcH), 3.97 (s, 1H, FcH), 3.88 (s, 1H, FcH), 2.14 – 1.85 (m, 6H, CH₂).

VIc: yield 66%, m.p. 192-198 °C, $R_f = 0.167$ (benzene:ethyl acetate = 40:1); ¹H NMR (500 MHz, DMSO) (δ ppm): 10.56 (s, 1H, OH), 8.41 (d, J = 8.5 Hz, 2H, C₆H₄), 8.09 (d, J = 15.5 Hz, 1H, CH), 8.04 – 7.96 (m, 4H C₆H₄, C₆H₅), 7.96 – 7.92 (m, 2H, C₆H₄), 7.86 (d, J = 15.5 Hz, 1H, CH), 7.57 – 7.52 (m, 3H, C₆H₅), 7.07 – 7.01 (m, 2H, C₆H₄).

VId: yield 65%, m.p. 203-208 °C, $R_f = 0.42$ (benzene:ethyl acetate = 20:1); ¹H NMR (500 MHz, DMSO) (δ ppm): 10.49 (s, 1H, OH), 8.28 (d, J = 8.5 Hz, 2H, C₆H₄), 7.97 (d, J = 15.5 Hz, 1H, CH), 7.94 (d, J = 8.5 Hz, 2H, C₆H₄), 7.87 (d, J = 8.5 Hz, 2H, C₆H₄), 7.82 (d, J = 5.1 Hz, 1H, TpH), 7.74 (d, J = 4.0 Hz, 1H, TpH), 7.63 (d, J = 15.5 Hz, 1H, CH), 7.22 (m, 1H, TpH), 6.98 (d, J = 8.5 Hz, 2H, C₆H₄).

VIe-8: yield 55%, m.p.159~160°C, $R_f = 0.32$ (Ethyl acetate: Petroleum ether =1: 4), ¹H NMR (500 MHz, DMSO) δ 10.50 (s, 1H), 8.32 (d, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 2H), 7.87 (t, J = 9.0 Hz, 5H), 7.77 (d, J = 15.5 Hz, 1H), 7.00 (t, J = 9.5 Hz, 4H), 4.01 (t, J = 6.5 Hz, 2H), 1.75 ~ 1.66 (m, 2H), 1.43 ~ 1.35 (m, 2H), 1.29~1.25 (m, 8H), 0.86 (t, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 188.66, 162.22, 161.43, 154.87, 145.88, 144.86, 139.17, 131.40, 130.22, 127.59, 125.84, 122.72, 119.78, 116.56, 115.30, 68.17, 40.16, 39.99, 39.83, 39.66, 39.49, 31.72, 29.32, 29.15, 29.07, 25.96, 22.56, 14.42.HRMS, m/z: Calcd for C₂₉H₃₂N₂O₃: 455.2329 [M-H]⁻ found: 455.2340.

VIe-10, Yield 55% m.p.153~154°C, $R_f = 0.35$ (Ethyl acetate: Petroleum ether =1: 4), ¹H NMR (500 MHz, DMSO) δ 10.41 (s, 1H), 8.12 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 8.5 Hz, 2H), 7.89 ~ 7.75 (m, 5H), 7.71 (d, J = 15.5 Hz, 1H), 4.02 (t, J = 6.5 Hz, 2H), 1.73 ~ 1.68(m, 2H), 1.40 (d, J = 7.5 Hz, 2H), 1.29~1.20 (m, 17H), 0.88 (t, J = 6.7 Hz .3H). HRMS, m/z: Calcd for C₃₁H₃₆N₂O₃:483.2642 [M-H]⁻ found: 483.2641.

VIe-12, yield 55%, m.p. 149~150 °C, R_f=0.36 (Ethyl acetate: Petroleum ether =1: 4) ¹H NMR (500 MHz, DMSO) δ 10.49 (s, 1H), 8.32 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 8.5 Hz, 2H), 7.90 ~ 7.85 (m, 5H), 7.76 (d, J = 15.5Hz, 1H), 4.04 (t, J = 6.5 Hz, 2H), 1.75 ~ 1.70 (m, 2H), 1.41(d, J = 7.5 Hz, 2H), 1.32~1.25 (m, 17H), 0.85 (t, J = 6.5 Hz . 3H). HRMS, m/z: Calcd for C₃₃H₄₀N₂O₃: 511.2955 [M-H]⁻ found: 511.2943.

VIe-14, yield 55%, m.p.148~149°C, $R_f = 0.38$ (Ethyl acetate: Petroleum ether =1: 4), ¹H NMR (500 MHz, DMSO) δ 10.56 (s, 1H), 8.39 (d, J = 8.5 Hz, 2H), 8.01 (d, J = 8.5 Hz, 2H), 7.98 ~ 7.88 (m, 5H), 7.83 (d, J = 15.5 Hz, 1H), 7.08 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 9.0 Hz, 2H), 4.10 (t, J = 6.5 Hz, 2H), 1.78 (dd, J = 14.5, 6.8 Hz, 2H), 1.47 (d, J = 7.5 Hz, 2H), 1.41 ~ 1.27 (m, 20H), 0.91 (t, J = 7.0 Hz, 3H). HRMS, m/z: Calcd for $C_{35}H_{44}N_2O_3$: 539.3268 [M-H]⁻ found: 539.3218.

Compd.	Absorption $\lambda_{max} / nm (\log \varepsilon / L cm^{-1} mol^{-1})$			
Ia-8	261 (5.45)	347 (5.67)	523 (4.65)	
Ib-8	261 (5.45)	346 (5.66)	535 (4.82)	
Ic-8	263 (5.47)	345 (5.73)	-	
Id-8	266 (5.41)	358 (5.70)	-	
IIc-8	266 (4.44)	357 (4.51)	-	
IId-8	282 (2.30)	357 (4.65)	-	
III-8	266 (4.44)	356 (4.51)	-	
IV-8	262 (4.42)	357 (4.67)	-	
V	259 (4.71)	350 (4.69)	-	

Table S1UV-vis absorption data of selected compounds in CH2Cl2.

Table S2Phase transition temperatures and associated enthalpies of compounds I-III.

Compd.	Phase transitions ^{<i>a</i>} °C ($\Delta H/kJ \text{ mol}^{-1}$)				
	First heating	Second heating	First cooling		
Ia-8	C ₁ 162.3 (11.2) C ₂ 187.8	C ₁ 163.7 (-7.6) C ₂ 187.9 (39.7) I	I 167.2 (-30.9) C		
	(38.2) I				
Ia-10	C 183.6 (74.4) I	C ₁ 128.1 (-4.2) C ₂ 170.8 (27.8) I	I 147.4 (-4.0) C ₂ 139.8		
			(-4.8) C ₁		
Ia-12	C ₁ 105.8 (26.9) C ₂ 165.4	C ₁ 107.9 (1.4) C ₂ 173.5 (34.0) I	I 162.8 (-36.8) C ₂ 98.0		
	(6.1) C ₃ 175.6 (27.4) I		(-1.6) C ₁		
Ia-14	C ₁ 101.8 (4.7) C ₂ 126.7	C ₁ 105.2 (4.1) C ₂ 165.3 (9.2) C ₃	I 160.1 (-26.6) C ₂ 97.5		
	(20.3) C ₃ 168.7 (28.3) I	172.5 (2.5) I	(-5.5) C ₁		
Ia-16	C ₁ 106.5 (15.3) C ₂ 174.9	C ₁ 108.7 (5.6) C ₂ 168.7 (27.1) I	I 158.4 (28.5) C ₂ 102.4		
	(41.8) I		$(6.9) C_1$		
Ib-8	C ₁ 149.3 (38.2) C ₂ 154.3	C 143.5 (36.3) I	I 80.4 (-6.2) Tg		
	(1.5) I				
Ib-12	C ₁ 99.6 (9.5) C ₂ 149.1 (44.2)	C ₁ 108.9 (-5.5) C ₂ 148.1 (39.8) I	I 108.8 (-30.5) C		
	Ι				
IIc-8	C 73.46 (35.1) I	C 113.89 (13.8) I	I 7.78 (-12.4) C		
II.a 1 <i>4</i>	C ₁ 53.81 (7.1) C ₂ 72.68	C ₁ 17.13 (11.6) C ₂ 68.09 (22.1) C ₃	I 57.25 (-60.6) C ₁ 11.02		
110-14	(65.7) I	73.10 (41.7) I	(-10.5) C ₂		
114 8	C = 04.07(50.6) I	C ₁ 26.12 (14.9) C ₂ 46.53 (-32.5)	I 20.82 (-15.7) C ₁		
110-0	C1 94.07 (50.0) 1	C ₃ 98.08 (49.4) I			
III-8	C ₁ 135.24 (20.6) C ₂ 184.84	C = 185 03(42 3) I	171 02 (<i>4</i> 3 6) C		
	(45.1) I	C 165.05(42.5)1	1/1.02 (43.0) C		
	C ₁ 105.56 (14.7) C ₂ 136.22		L 165 73(-42 6) C 147 49		
III-14	(11.0) C ₃ 168.87 (35.2) C ₄	C ₁ 148.34 (2.5) C ₂ 170.09 (44.2) I	$(-2 0) C_{2}$		
	173.58 (10.7) I		$(-2.0) C_2$		

Fig. S1 TG curves of Ia-Id

Fig. S2 XRD patterns of compound **IV-10** (left) and **V** (right) on cooling. Asterisks in the spectrum show the alumina from the sample cell holder.

Fig. S9 ¹H NMR of compound Ia-10

Fig. S12 ¹H NMR of compound Ia-16

Fig. S15 ¹H NMR of compound Ic-8

Fig. S18 ¹H NMR of compound Id-8

Fig. S24 ¹H NMR of compound III-8

Fig. S27 ¹H NMR of compound IV-10

