Supporting Information

Fabrication of N-doped and shape-controlled porous monolithic carbons from polyacrylonitrile for supercapacitors

Yu Shu,^a Jun Maruyama,^b Satoshi Iwasaki,^b Shohei Maruyama,^b Yehua Shen^c and Hiroshi Uyama^{*ac}

^a Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
^b Research Division of Environmental Technology, Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
^c Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi Province, 710127, PR China

Email: uyama@chem.eng.osaka-u.ac.jp

Figure S1 Scheme illustration of the as-assembled two-electrode symmetric supercapacitor by a 2E-CELL-SUS cell.

Figure S2 PM fabricated by the TIPS approach with various shapes (a), SEM images of the obtained PM (b-d).

Figure S3 FTIR spectrum of all related products from the raw PAN powder to PMC.

Figure S4 High-resolution XPS spectra and fitted data of C 1s peak (d), N 1s peak (e), and O 1s peak (f) for CD-PMC.

Figure S5 Capacitance retention of PMC from GCD curves at a constant current density of 20 A g^{-1} for 10000 cycles with the 1st, 5000th, and 10000th cycles inset.

Figure S6 SEM images of electrode films synthesized by PMC (a), CD-PMC (b), and YP-50F (c) with the inset of contact angle results for $1 \text{ M H}_2\text{SO}_4$ aqueous electrolyte.