Supporting File

Efficient utilization of potash alum as a green catalyst for production of furfural, 5-hydroxymethylfurfural and levulinic acid from mono-sugars Dinesh Gupta^{a,b}, Ejaz Ahmad^a, Kamal K. Pant^{*a}, Basudeb Saha^{*b,c}

^aDepartment of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India

^bDepartment of Chemistry, University of Delhi, 110007, India

^cCatalysis Centre for Energy Innovation, University of Delaware, Newark, DE 19716, USA

Corresponding Author: email: kkpant@chemical.iitd.ac.in, basudeb_s@hotmail.com

Figure S1: ¹H-NMR of HMF from glucose in CDCl₃. Reaction condition: Glucose =10 mmol, PA =1.2 mmol, solvent =10 mL (Water +MIBK 1:4) at 140 $^{\circ}$ C

Figure S2: ¹H NMR of one-pot synthesis of HMF and LA from glucose, close view, show two triplets and one singlet characteristic pick of LA in $CDCl_3$.. Other reaction condition: Glucose =10 mmol, PA =1.2mmol, t=6 h, solvents= 10 mL, (1:4Water +MIBK). 180 °C

Figure S3: ¹H NMR of one-pot synthesis of HMF and LA from glucose, close view, show two triplets and one singlet characteristic pick of LA in CDCl₃ and formylation of HMF in presence of formic acid as by product. Other reaction condition: Glucose =10 mmol, PA =1.2 mmol, t=6 h, solvents= 10 mL, (1:4Water +MIBK). 180 °C

Figure: S4. ¹H-NMR spectra of furfural in CDCl3, synthesis from furfural. Reaction condition

Figure: S5 UV-visible spectrum of phenol-sulphonic acid experiment, calculating total reducing sugar.

Figure S6: Four point calibration plot of standard Glucose

Figure S7; Blank experiment, ¹ H NMR (CDCl₃), Glucose = 10 mmol, T = 140 °C, t= 6 h.

Figure S8: Time dependent dehydration of Glucose to HMF, change of product color show as time of reaction increase, other reaction condition Glucose = 10 mmol, PA = 1.2 mmol, solvent =10 mL (water +MIBK,1:4), Temperature = 140 °C.