Electronic Supplementary Information (ESI)

Synthesis, crystal structure and water oxidation activity of [Ru(terpy)(bipy)Cl]⁺ complexes: Influence of ancillary ligands on O₂ generation

Rekha Dhiman, Namita Singh, Bharat Ugale and C. M. Nagaraja*

Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India. Email: <u>cmnraja@iitrpr.ac.in</u>

Contents

- 1. Fig. S1: ¹H NMR spectrum of complex 1 in DMSO-d₆.
- 2. Fig. S2: ¹H NMR spectrum of complex 2 in DMSO-d₆.
- 3. Fig. S3: ¹H NMR spectrum of complex 3 in DMSO-d₆.
- 4. Fig. S4: ¹H NMR spectrum of complex 4 in DMSO-d₆.
- 5. Table S1: Selected bond distances (Å) and angles (°) for complexes 1 & 2.
- 6. Table S2: First order rate data.
- 7. Fig. S5: ¹H NMR analysis of complex 2 in a 1:1 ACN-d₃/D₂O mixture.
- 9. Fig. S6: ESI-MS analysis of regenerated complex 2.
- Scheme S1: Regeneration of the catalyst 2 involving the oxidation of the MeMPTP ligand
- 11. Fig. S7: ESI-MS analysis of MeMPTP ligand after reaction with CAN.

Fig. S1: ¹H NMR spectrum of complex 1 in DMSO-d₆

Fig. S2: ¹H NMR spectrum of complex 2 in DMSO-d₆

Fig. S3: ¹H NMR spectrum of complex 3 in DMSO-d₆

Fig. S4: ¹H NMR spectrum of complex 4 in DMSO-d₆

Complex 1				
Ru1-N1	2.078(6)	Ru1-N5	2.066(6)	
Ru1-N2	2.042(6)	Ru1-N6	1.942(6)	
Ru1-N3	2.065(6)	Ru1-Cl1	2.410(19)	
Cl1-Ru1-N1	95.33(17)	N1-Ru1-N6	172.7(2)	
Cl1-Ru1-N2	170.01(16)	N2-Ru1-N3	87.4(2)	
Cl1-Ru1-N3	88.74(17)	N2-Ru1-N5	96.7(2)	
Cl1-Ru1-N5	89.37(17)	N2-Ru1-N6	95.0(2)	
Cl1-Ru1-N6	91.15(16)	N3-Ru1-N5	159.0(2)	
N1-Ru1-N2	78.9(2)	N3-Ru1-N6	79.2(2)	
N1-Ru1-N3	104.2(2)	N5-Ru1-N6	79.9(2)	
N1-Ru1-N5	96.9(2)			
	Com	plex 2		
Ru1-N1	2.070(3)	Ru1-N4	2.040(2)	
Ru1-N2	1.951(3)	Ru1-N5	2.060(3)	
Ru1-N3	2.084(3)	Ru1-Cl1	2.413(13)	
Cl1-Ru1-N1	89.54(6)	N1-Ru1-N5	159.32(10)	
Cl1-Ru1-N2	90.34(7)	N2-Ru1-N3	173.40(10)	
Cl1-Ru1-N3	94.85(6)	N2-Ru1-N4	96.42(9)	
Cl1-Ru1-N4	173.24(7)	N2-Ru1-N5	79.80(10)	
Cl1-Ru1-N5	89.95(6)	N3-Ru1-N4	78.40(9)	
N1-Ru1-N2	79.53(10)	N3-Ru1-N5	96.10(10)	
N1-Ru1-N3	104.54(10)	N4-Ru1-N5	91.17(9)	
N1-Ru1-N4	91.76(9)			

Table S1: Selected bond distances (Å) and angles (°) for complexes 1 &2

Table S2: First order rate data

Complex	K x 10 ⁻³	R*	t 1/2
1	9.0	0.9957	77
2	4.5	0.9966	154
3	1.8	0.9987	384
4	5.3	0.9973	130

* R indicates the goodness of fit to a linear trace.

Fig. S5: ¹H NMR stack plot of complex **2** in 1:1 ACN- d_3/D_2O mixture with labeling of the peak due to H11 proton (a) adjacent to (chlorido), (b) adjacent to (aqua) ligand.

Fig. S6: ESI-MS spectrum of isolated complex 2 after oxidation with CAN showing the molecular ion peak at m/z 708.077.

Scheme S1: Regeneration of the catalyst 2 involving the oxidation of the MeMPTP ligand

Fig. S7: ESI-MS spectra of MeMPTP ligand before (a) and after (b) treating with CAN.