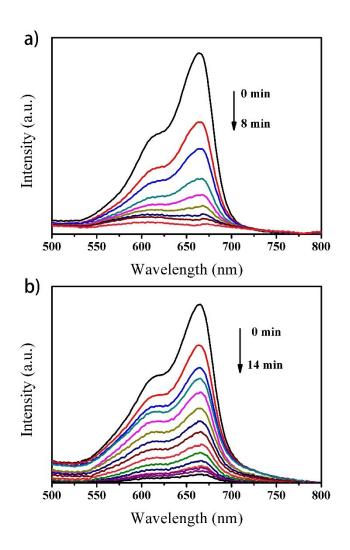
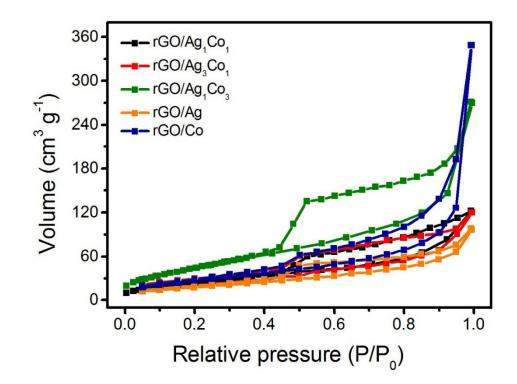
Electronic Supplementary Information

Bi-functional reduced graphene oxide/AgCo composite nanosheets: an efficient

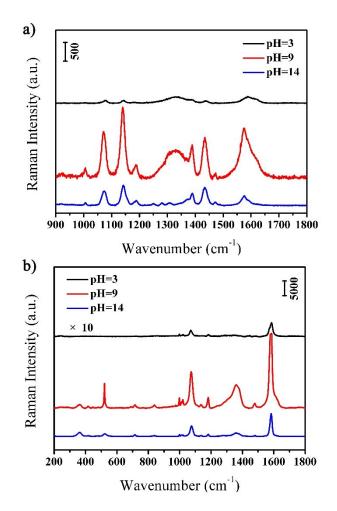
catalyst and SERS substrate for monitoring of the catalytic reaction


Xiaowei Ma, Yue Guo, Jing Jin, Bing Zhao, Wei Song,*

State Key Laboratory of Supramolecular Structure and Materials, Jilin University,


Changchun 130012, P. R. China

*Corresponding author:


Fax & Tel.: +86-431-85168473; E-mail: weisong@jlu.edu.cn

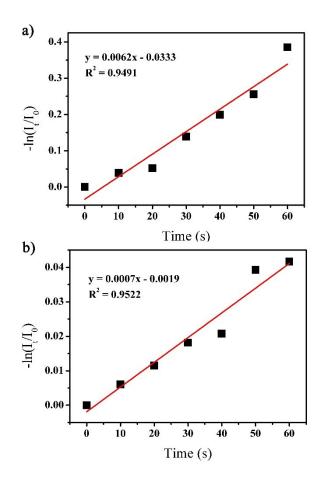

Fig. S1 a) UV-Vis absorption spectra for the reduction of MB by NaBH₄ in the presence of rGO/AgCo catalyst; b) UV-Vis absorption spectra for the degradation of MB under UV light in the presence of rGO/AgCo catalyst.

Fig. S2 Nitrogen adsorption–desorption isotherms of the prepared catalysts including rGO/Ag₁Co₁, rGO/Ag₃Co₁, rGO/Ag₁Co₃, rGO/Ag and rGO/Co composite nanosheets.

Fig. S3 SERS spectra of a) PATP molecules and b) MBA molecules with a concentration of 10^{-5} M on the surface of rGO/AgCo composite nanosheets that synthesized in a mixing solution with different pH values after the addition of the reducing agent.

Fig. S4 a) The curve of the linear relationship between $Ln(I_t/I_0)$ and the beginning reaction time according to the bands at 1623 cm⁻¹ for the catalytic reduction of MB by NaBH₄ on the surface of rGO/AgCo composite nanosheets; b) The curve of the linear relationship between $Ln(I_t/I_0)$ and the beginning reaction time according to the bands at 1623 cm⁻¹ for the catalytic degradation of MB under ultraviolet light on the surface of rGO/AgCo composite nanosheets.

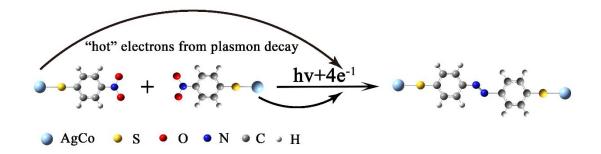


Fig. S5 Mechanism of the Plasmon-driven surface-catalyzed reaction on the surface of AgCo alloy

nanoparticles supported on the rGO nanosheets.