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 Fig. S1 Validation of the methods used for prediction of secondary 
structure. The bVKOR topology and its membrane content were 
predicted by 8 different methods for each kind of forecast. Two types 
of consensus ̶ for the secondary structure prediction and for the 
membrane content prediction‒were considered. The secondary 
structure interpretation (DSSP) of the crystallographic structure 
1NV5.  

 

  



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx N. Chatron., 2017, 00, 1-3 | 3 

Please do not adjust margins 

Please do not adjust margins 

Fig. S2 The homology modeling of hVKORC1. (A) Alignment 
of the sequence’s segment (13-181 residues) of bVKOR with 
the sequence of hVKORC1. The identical residues are 
distinguished by grey background; the similar residues are 
shown in blue. The secondary structure interpretation of the 
template sequence (top) and the predicted secondary 
structure composition (consensus) of the target sequence 
(below) are shown. (B) Structure 4NV5 of the bVKOR is 
presented as cartoon. The structural fragment showing the 
best sequence similarity with hVKORC1 is denoted in orange. 
(C) The hVKORC1 topology and its membrane content were 
predicted by 8 different methods for each kind of forecast. 
Two types of consensus ‒ for the secondary structure 
prediction and for the membrane content prediction ‒ were 

schematized (in deep teal).  
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Fig. S3 Hydrophobic interactions stabilising the hVKORC1 structure 
of. Protein is presented in two orthogonal views as cartoon with the 
hydrophobic residues showed as space-filling spheres.  

 

Fig. S4 Structural features of hVKORC1. (A) The secondary structure 
assignment for protein was done for each 1-µs trajectory, 1′′ (top) 
and 3′′ (bottom). The α-helix, 310 helix, β-bridge, turn and loop are 
shown in red, orange, light-green, blue and cyan, respectively, and 
referred to the predicted helices. (B) Drift of helices was monitored 
over the extended simulations 1′′ (left) and 3′′ (right). Two centroids, 
assigned on the last four residues at the top and at the bottom of 
each helix, were defined. A sole centroid for HH was assign on seven 
residues. . Coordinates of each centroid were computed for each MD 
simulation time step and presented as the lines connecting the two 
TM centroids, in 3D space (top) and as the points projected on the x-
y plane (bottom) coloured from blue (t=0) to cyan (t=1 µs) for the top 
of TM helices; from black (t=0) to green (t=1 µs) for the bottom; and 
from red (t=0) to yellow (t=1 µs) for HH.   
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 Fig. S5 Molecular dynamics simulation of hVKORC1. The RMSFs 
profiles of the short (100 ns 1, 2 and 3) and extended (1-µs) 
simulations 1′′ and 3′′. The RMSFs were computed on the Cα atoms. 
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Fig. S6 Global motions and their correlations. The inter-residue 
cross-correlations maps resulting from PCA of the short (100 ns) (left) 
and extended to 500 ns (middle) and to 1 µs (right) trajectories, 1′′ 
(the upper half-matrix) and 3′′ (the lower half-matrix). Correlated 
(positive) and anti-correlated (negative) motions between atom 
pairs are presented as a gradient between red and color colors. 
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Fig. S7 Spectral analysis of trajectory 3′′ after PCA. (A) Similarity 
matrix 𝑊; (B) The largest eigenvalues; (C) First slow variable; (D) 
Second slow variable. By searching the changes of sign of this slow 
variable, it appears that the main basin is approximately located 
between the frame12500 (t=250 ns) and the frame 30000 (t=600 ns), 
and the second basin between the frame 37500 (t=750 ns) and the 
last frame 50000 (t=1000 ns).  

 

  



ARTICLE Journal Name 

8 | N.Chatron et al., 2017, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

Fig. S8 Spectral analysis of trajectory 3′′ without PCA reduction. (A) 
Similarity matrix 𝑊; (B) The largest eigenvalues; (C) First slow 
variable; (D) Second slow variable.  
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Fig. S9. Structural features of models MI-MIV. (A) The secondary 
structure evolution over MD simulations (all trajectories were 
merged). The α-helix, 310 helix, β-bridge, turn and loop are shown in 
red, orange, light-green, blue and cyan, respectively, and referred to 
the predicted helices (top). For each model, the cysteine residues 
forming S•••S bridge is noted at top. 

 

 

Fig. S10. The clusters of conformations defined with cutoff of 2.0 Å 

and their population (in %) calculated for MD simulation (2x100 ns) 

of models MI-MIV. For each model, the cysteine residues forming 

S•••S bridge is noted at top.  
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Fig. S11. Molecular dynamics simulations of the hVKORC1 
complexes. (A) The RMSDs from the initial coordinates (t=0 ns) are 
computed on the Cα atoms of 100-ns MD trajectories of vitKEP•TIII 
(green) and vitK2-OH•TIV (red). (B) The RMSFs are computed on the Cα 
atoms over of 100-ns MD trajectories of vitKEP•TIII (green) and vitK2-

OH•TIV (red). (C) The RMSDs from the initial coordinates (t=0 ns) are 
computed on the Cα atoms of 100-ns MD trajectories of A•TIII 
(violet), D•TIII (orange) and P•TIII (purple) ad W•TIII (cyan). (D) The 
RMSFs are computed on the Cα atoms over of 100-ns MD trajectories 
of A•TIII (violet), D•TIII (orange) and P•TIII (purple) ad W•TIII (cyan).  
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C. Table S1 
 

Table S1. Crystallographic structures of VKOR reported in Protein 
Data Base (PDB) [1]. The PDB identification code (ID), resolution 
(Res, in Å), the sequence length, missing residues, mutated residues, 
cysteine residues, distances (d, in Å) between the sulfur atoms from 
cysteine residues and reference are denoted for each structure. 

*Two chains, A and B. 

**The cysteine residue or its mutant, as numbered in a structure 

sequence and its corresponding number in hVKORC1 sequence 

denoted in brackets.  

 
C. Modelling Methods 

 
1. Secondary structure prediction 

 
PREDATOR [4] algorithm is based on potentially hydrogen-

bonded residues recognition in the target sequence using a 
structural database information. First, the propensity of residues to 
form α-helix or β-sheet type hydrogen bonds is calculated for each 
single residue. Then, for each residue, the influence of the nearest 
neighbors is considered. Finally, the secondary structure consensus 
is established for each residue, by combination of the two 
predictions. 

GOR IV [5] uses information theory and Bayesian statistics to 
calculate the propensity of each residue from the target sequence to  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
form specific secondary structure, considering the nearest neighbors 
of the local segment. 

PSIPRED [6] is based on position-specific scoring matrices (PPSM) 
combined to neural network application. The target sequence is 
submitted to the PSI-BLAST algorithm and, after three iterations, the 
PPSM is picked. This matrix is then split in fifteen residues length 
windows, each one used as input for the neural network. A second 
neural network filters successive outputs from the first one. Ten 
percent of the data is kept aside as an evaluation set. The neural 
network is trained on the remaining data for weights optimization, 

PDB ID 
Res, 

(Å) 

Sequence 

length   

Missing 

residues 
Cysteine** S···S, d (Å) Ref 

   3KP9       3.6  16 - 279 
53-55,                           

91-92 

C50(43), C56S(51)  

C130(132), C133(135) 

C50···S56,    13 

S56···C130,    8 

C130···C133,  2 

[2] 

4NV2    3.6 17 - 282 92-93 
C50A(43), C56S(51),  

C130(132), C133(135) 

A50···C56,     4 

C56···C130,   2 

C130···C133, 4 

[3]  

4NV5    

A* 
2.8 17 - 282 

49-53,                       

92,155                          

C56(51), C130(132), 

C133(135) 

C56···C130,   2 

C130···C133, 4 
[3]  

4NV5    

B* 
2.8 13 - 279 49-53 

C56(51), C130(132), 

C133(135) 

C56···C130,   2 

C130···C133, 4 
[3] 

4NV6          4.2 17 - 282 92,  155 
C50(43), C56(51)  

C130(132),  C133(135) 

C50···C56,   14 

C56···C130,   2 

C130···C133, 4 

[3]  
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according to an on-line back-propagation procedure. Training is 
stopped when the accuracy of the network on the evaluation set 
starts to decrease. 

PROF [7] is based on neural network, but requires five steps. This 
algorithm starts with GOR method, complemented with evolutionary 
information. The predicted by GOR results, combined with neural 
networks, are trained either in an unbalanced or in a balanced way 
using different profiles, producing the classifiers. The results are 
analyzed by linear discrimination or neural networks, yielding new 
classifiers which are then used again for a training. Finally, the two 
resulting classifiers are averaged to give a unique prediction for each 
residue. 

JPRED [8], a consensus secondary structure predictor, uses 
evolutionary information and is based on six methods  ̶  NNSSP 
(nearest neighbors prediction), PHD (a jury decision neural 
networks), DSC (linear discrimination), MULPRED (a consensus single 
sequence method combination), ZPRED (conservation number 
weighted prediction) and PREDATOR (hydrogen bonding 
propensities). 
 
2. Topology prediction  

 
HMMTOP [9] predicts the localization of helical transmembrane 

segments and the topology of transmembrane proteins. It bases on 

the concept, that the transmembrane proteins topology is 

determined by the maximum divergence of amino acid composition 

of sequence segments. The method localizes certain sequence 

segments in areas used as structural parts (inside, outside, inside 

helix tail, outside helix tail and membrane helix). The method 

accuracy is enhanced by hidden Markov model, which controls the 

different segments length. 

OCTOPUS [10] uses a combination of hidden Markov models 

and artificial neural networks. It first performs a homology search 

using BLAST to create a sequence profile used as the input to a set of 

neural networks which predict the location preference for each 

residue  ̶  transmembrane,  interface, globular, loop, inside or 

outside. These predictions are used as input to a two-track hidden 

Markov model, which uses them to calculate the most likely 

topology. Results of these two sets are finally combined to obtain 

each residue preference. 

SPOCTOPUS [11] uses the same algorithm as OCTOPUS, 
enforced with a predicting the signal peptide in the target sequence. 
Location of residues from this signal peptide is determined by a 
hidden Markov model prior the topology prediction by OCTOPUS, 
providing more accurate topology prediction. 

PHOBIUS and POLYPHOBIUS [12] use a hidden Markov model, 
decoding algorithm that combines probabilities for sequence 
features of homologs by considering the average of the posterior 
label probability of each position in a global sequence alignment.  

PHILIUS [13] (www.yeastrc.org/philius) is based on a hidden 
Markov model similarly to PHOBIUS and POLYPHOBIUS, expanded to 
using the more powerful class of dynamic Bayesian networks.  

SCAMPI [14], a simple generic topology model, uses a 
contribution of position-specific amino acids to the free energy of 
membrane insertion that performs on a par with the current best 
statistics-based topology predictors. It is similar to a hidden Markov 
model in the sense that states and state transitions are used to 
define an underlying grammar. 
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D. PDB files contain the atomic coordinates of the 

 models 
 

S1. The atomic coordinates of the vitKEP-hVKORC1 complex at 
t=0 
S1-1 and S1-2. The atomic coordinates of the vitKEP-hVKORC1 
complex at t=100 ns of each replica (1 and 2) 
 
S2. The atomic coordinates of the W-hVKORC1 complex at t=0 
  
S2-1 and S2-2. The atomic coordinates of the W-hVKORC1 
complex at t=100 ns of each replica (1 and 2) 
 
 

 


