NIR Light Triggered Shrinkable Thermoresponsive PNVCL Nanoshells for Cancer Theranostics

Deepak S. Chauhan^{a§}, S. Indulekha^{a§}, Rupesh Gottipalli^a, B. Pradeep K. Reddy^a, Tanmayee R.

Chikate^a, Ramkrishn Gupta^a, Dushyant N. Jahagirdar^a, Rajendra Prasad^b, Abhijit De^{c*} and Rohit

Srivastava^{a*}

^a Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India. Email: <u>rsrivasta@iitb.ac.in</u>

^b Academy of Scientific and Innovative Research (AcSIR), National Chemical Laboratory, Pune-411008, India

^c Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India. Email: <u>ade@actrec.gov.in</u>

[§] These authors have equal contribution

Calculation to determine photothermal efficiency:

According to Roper et. al [26], total energy balance of the system is expressed by the following equation (1)

$$\sum_{i} m_i C_{p,i} \frac{dT}{dt} = Q_{NS} + Q_{Dis} - Q_{Surr}$$
(1)

Where, m = mass of water, C_p = heat capacity of water, T = solution temperature, Q_{NS} = energy input by the Au PNVCL NS, Q_{Dis} = baseline energy input by the sample cell and Q_{Surr} = heat conduction from the system surface by air.

 Q_{NS} is the laser induced source term and represents the heat dissipated from the surface during irradiation of Au PNVCL NS by 750nm laser.

$$Q_{NS} = I (1 - 10^{-A_{750}}) \eta$$
 (2)

Where, *I* is incident laser power, η is the conversion efficiency, and A_{750} is the absorbance of Au PNVCL NS at 750 nm.

 Q_{Surr} is the outgoing thermal energy and is represented by following equation

$$Q_{Surr} = hS(T - T_{Surr})$$
(3)

where *h* is heat transfer coefficient, *S* is the surface area of the well, *T* is the solution temperature, and T_{surr} is temperature of the surrounding.

Since, heat output Q_{Surr} is increased along with the increase in temperature according to the equation (3), system temperature will rise to a maximum when the heat input is equal to heat output as shown in following equation (4):

$$Q_{NS} + Q_{Dis} = Q_{Surr - Max} = hS(T_{Max} - T_{Surr})$$
(4)

Where $Q_{Surr-Max}$ is heat conduction away from the system when the sample cell reaches the equilibrium temperature, and T_{Max} is the equilibrium temperature. Photothermal transduction efficiency η can be calculated by substituting equation (2) for Q_{NS} into equation (4) and obtaining equation (5)

$$\eta = \frac{hS(T_{Max} - T_{Surr}) - Q_{Dis}}{I(1 - 10^{-A_{750}})}$$
(5)

Where Q_{Dis} was measured independently using water to be 8.1 mW for 750 nm laser, $T_{Max} - T_{Surr}$ was found to be 20.6 °C for Au PNVCL NS, *I* was 650 mW, A₇₅₀ was determined to be 0.2544 at 750 nm. Thus, only the *hS* remains unknown for calculating η . To determine *hS*, a dimensionless driving force temperature, ϑ is introduced using the maximum system temperature T_{Max} .

$$\theta = \frac{T - T_{Surr}}{T_{Max} - T_{Surr}}$$
(6)

And a sample system time constant τ_s

$$\tau_s = \frac{\sum_i m_i C_{p,i}}{hS} \tag{7}$$

which is substituted into equation (1) and rearranged to yield

$$\frac{d\theta}{dt} = \frac{1}{\tau_s} \left[\frac{Q_{NS} + Q_{Dis}}{hS(T_{Max} - T_{Surr})} - \theta \right]$$
(8)

When the laser source is turned off, $Q_{NS} + Q_{Dis} = 0$, thereby reducing the equation (8) to

$$\frac{d\theta}{dt} = \frac{-\theta}{\tau_s} \tag{9}$$

and after integration, giving the expression

$$t = -\tau_s ln\theta \tag{10}$$

Hence, time constant (τ_s) was determined by plotting the time versus the negative logarithm of temperature in cooling period. Thus, with the help of equation (10) and (7), *hS* deduced to be 3.81 mW after taking *m* = 0.1 g and *C* = 4.2 J/g. Substituting these values in equation (5), the photothermal transduction efficiency (η) of Au PNVCL NS turned out to be 24.42 %.

Fig. S1. FTIR spectrum of **(A)** PNVCL-COOH, **(B)** CHT, and **(C)** CHT-g-PNVCL. Red circles indicate relevant peaks

Fig. S2. Phase separation with increase in temperature and color change of CHT-g-PNVCL NPs after gold coating. **(A.i, ii)** CHT-g-PNVCL at physiological temperature i.e. 30-40 °C (i), and phase separated CHT-g-PNVCL at hyperthermic temperature i.e. 43-44 °C (ii); dashed rectangle shows the set temperature. **(B)** Change in color due to gold shell formation over the surface of CHT-g-PNVCL NPs.

Fig.S3. Photothermal characterization of Au PNVCL NS. **(A.i, ii)** Temperature change corresponding to laser ON and OFF (i), and time versus negative logarithm of driving force temperature (ϑ) from the cooling stage of Au PNVCL NS (ii).

Fig. S4. FEG-SEM image of CHT-g-PNVCL NPs and size distribution.

Fig. S5. Intensity drawing and percentage frequency of dead cells. Abbreviation C: Cells only, C+ L: Cells + Laser, C+ Au PNVCL NS: Cells incubated with Au PNVCL NS, and C + Au PNVCL NS + L: 4 min laser irradiation over cells incubated with Au PNVCL NS.

Fig. S6. Pilot X-ray imaging. **(A.i, ii)** X-ray imaging of water (left), Au PNVCL NS (centre), iodine (right) (i), and intensity plot profile showing exact gray values (ii).