Monitoring the mechanism of formation of [Ce(1,10-phenanthroline)₂(NO₃)₃] by *in-situ* luminescence analysis of 5d-4f electronic transitions

Laura Ruiz Arana,^a Patric Lindenberg,^a Hajer Said,^a Marvin Radke,^a Niclas Heidenreich, ^{a, b} César dos Santos Cunha,^{a,c} Sebastian Leubner ^a and Huayna Terraschke ^{a,*}

Electronic supplementary information

Contents

1.	Experimental Setups	2
2.	Ex-situ and in-situ luminescence spectra	4
3.	Ex-situ X-ray diffraction analysis	5
4.	In-situ IR measurements	5
5.	In-situ X-ray diffraction analysis at the DESY beamline P07B	6
	In-situ measurements of light transmission and in-situ X-ray diffraction analysis SY beamline P09	at the
Refe	erences	9

www.ilacs.uni-kiel.de

^a Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany. E-mail: hterraschke@ac.uni-kiel.de.

^b DESY Photon Science, Notkestr. 85, 22607 Hamburg, Germany.

^c Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo-SP, Brazil.

1. Experimental Setups

Table 1: Different experimental conditions applied for *in-situ* monitoring the formation of $[Ce(phen)_2(NO_3)_3]$ (phen = 1,10-phenanthroline) at the University of Kiel (Setup I, experiment type **1-3**) and at the Deutsches Elektronen-Synchrotron (DESY) (Setup II, experiment types **4-5**).

Number of experiment type	1	2	3	4	5
Added Ce(NO ₃) ₃ ·6 H ₂ O / mmol	0.69	0.69	0.69	0.69	0.69
Volume of $Ce(NO_3)_3$ -6 H_2O solution / mL	30	30	30	30	30
Added 1,10-phenanthroline / mmol	1.38	1.38	1.38	1.38	1.38
Volume of 1,10- phenanthroline solution / mL	5	5	5	5	5
Temperature / °C	35	20	25	25	30
Excitation wavelength / nm	-	400	400	-	365
Emission wavelength / nm	-	700	700	-	-
Beamline	-	-	-	P07	P09
Energy of synchrotron X-ray beam / keV	-	-	-	87.1	23

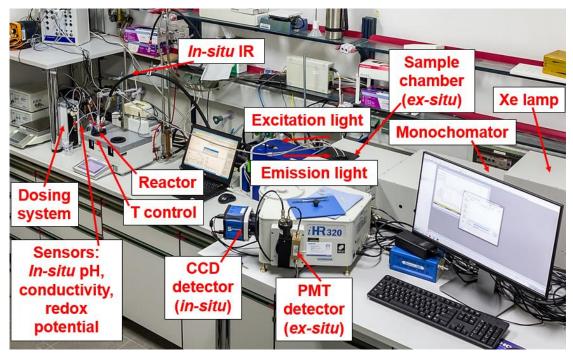
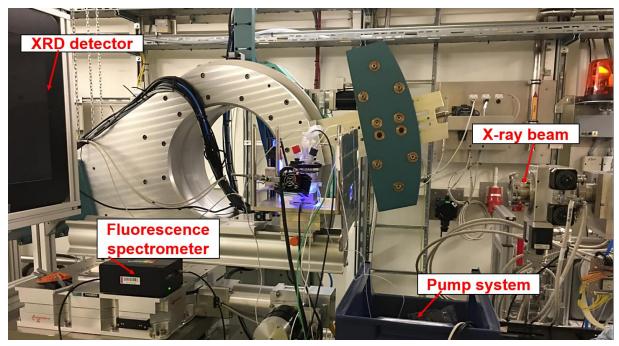



Figure S1: Setup I of the *in-situ* crystallization cell at University of Kiel showing the combination of a Mettler Toledo Easy Max[™] reactor system with a Horiba Fluorolg-3 fluorescence spectrometer. The Easy Max[™] reactor system includes a dosing system, temperature control, *in-situ* measurements of pH value, ion conductivity, redox potential and infrared (IR)

spectroscopy. The Fluorolg-3 fluorescence spectrometer is equipped with a Y-shaped optical fiber, a Xenon lamp, a charged-coupled-device (CCD)-based and a photomultiplier tube (PMT) detector.

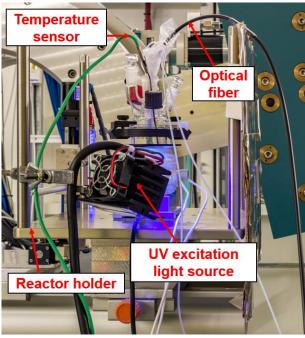


Figure S2: Setup II used at the DESY for simultaneous measurements of *in-situ* X-ray diffraction (XRD) analysis and light transmission.

3

2. Ex-situ and in-situ luminescence spectra

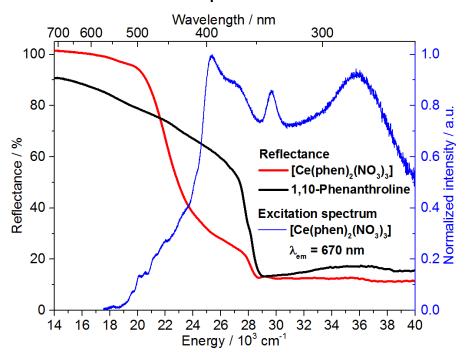


Figure S3: *Ex-situ* excitation spectrum of the [Ce(phen)₂(NO₃)₃] complex (λ_{em} = 670 nm, blue curve, experiment 1, Table S1) in comparison to reflectance spectra of [Ce(phen)₂(NO₃)₃] (red curve, experiment 2, Table S1) and pure 1,10-phenanthroline (black curve).

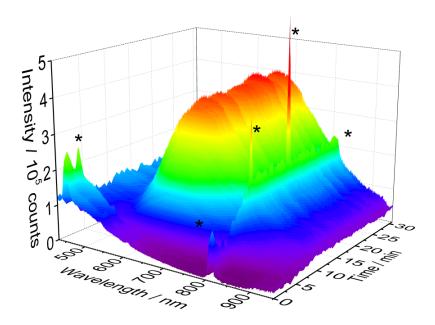


Figure S4: *In-situ* luminescence spectra (λ_{ex} = 400 nm) showing the shift of the emission band assigned to Ce³⁺ in the ethanolic solution at 415-700 nm to 500-900 nm, assigned to Ce³⁺ within the [Ce(phen)₂(NO₃)₃] for monitoring the formation of the solid complex (experiment 1, Table S1). The asterisk (*) marks measurement artefacts.

www.ilacs.uni-kiel.de

3. Ex-situ X-ray diffraction analysis

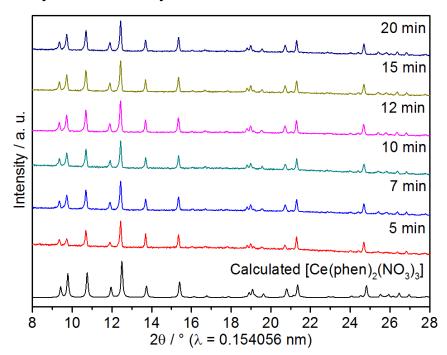


Figure S5: *Ex-situ* XRD analysis of samples removed from the reactor at t = 5, 7, 10, 12, 15 and 15 min during the synthesis of $[Ce(phen)_2(NO_3)_3]$, in comparison to the respective calculated powder pattern^[1] (experiment 2, Table S1).

4. In-situ IR measurements

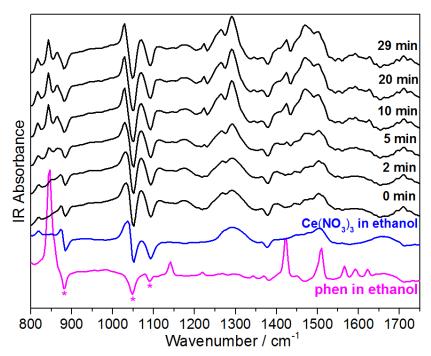


Figure S6: Infrared spectra of the initial phen and $Ce(NO_3)_3 \cdot 6H_2O$ ethanolic solutions compared to the *in-situ* IR data recorded during synthesis of [Ce(phen)₂(NO₃)₃] (experiment 3, Table S1). The asterisk (*) signs show negative values for the IR bands, caused by air bubbles on the sensor.

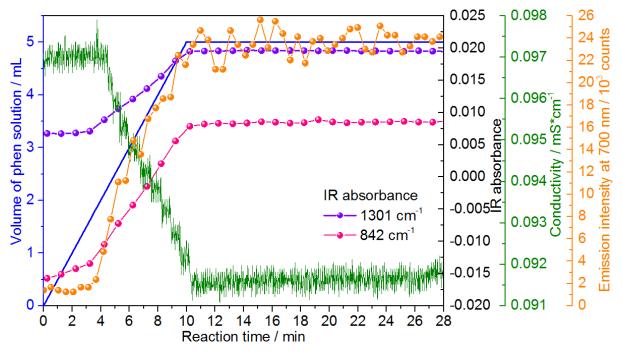


Figure S7: Time dependence of the addition of the phen solution to the $Ce(NO_3)_3 \cdot 6H_2O$ solution (blue curve), of the IR bands at 1301 cm⁻¹ (NO_3^- , violet curve) and 842 cm⁻¹ (phen, pink curve), of the ion conductivity (green curve) as well as of the simultaneously measured emission intensity of [$Ce(phen)_2(NO_3)_3$] at 700 nm (orange curve) (experiment 3, Table S1).

5. In-situ X-ray diffraction analysis at the DESY beamline P07B

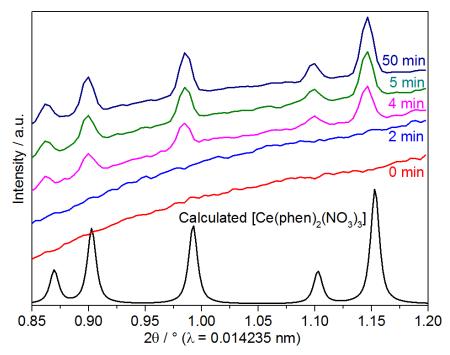


Figure S8: Time-resolved *in-situ* XRD patterns measured at the DESY beamline P07B during the formation of $[Ce(phen)_2(NO_3)_3]$ (experiment 4, Table S1) in comparison to the respective calculated pattern^[1].

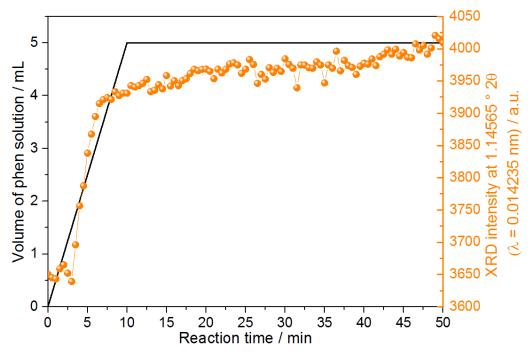


Figure S9: XRD intensity at 1.14565 ° 20, assigned to the (1,1,1) reflection of $[Ce(phen)_2(NO_3)_3]$ (orange curve) and time-dependence of the volume of phen solution added to the $Ce(NO_3)_3 \cdot 6H_2O$ solution (black curve) during synthesis of $[Ce(phen)_2(NO_3)_3]$ at the DESY beamline P07B (experiment 4, Table S1).

6. *In-situ* measurements of light transmission and *in-situ* X-ray diffraction analysis at the DESY beamline P09

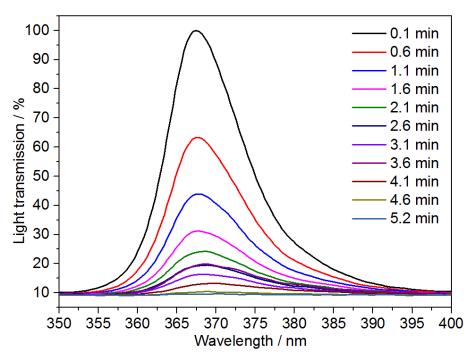


Figure S10: Time-dependent *in-situ* light transmission measured simultaneously to *in-situ* XRD at the DESY beamline P09 during synthesis of [Ce(phen)₂(NO₃)₃] (experiment 5, Table S1).

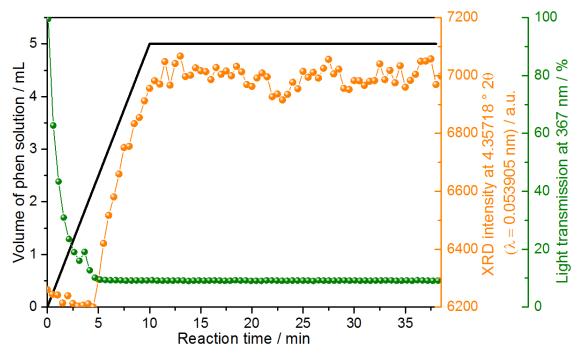


Figure S11: XRD intensity at 4.35718 ° 20, assigned to the (1,1,1) reflection of $[Ce(phen)_2(NO_3)_3]$ (orange curve) in comparison to the time-dependent volume of phen solution added to the $Ce(NO_3)_3 \cdot 6H_2O$ solution (black curve) and light transmission at 367 nm (green curve) during synthesis of $[Ce(phen)_2(NO_3)_3]$ at the DESY beamline P09 (experiment 5, Table S1).

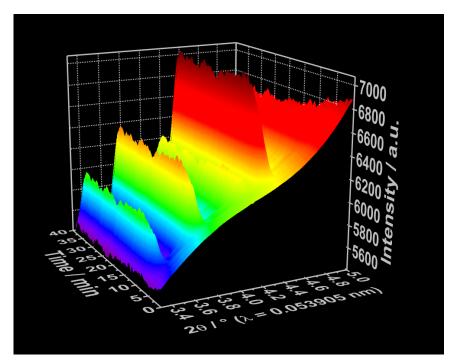


Figure S12: *In-situ* X-ray diffraction patterns measured during synthesis of [Ce(phen)₂(NO₃)₃] at the DESY beamline P09 (experiment 5, Table S1).

8

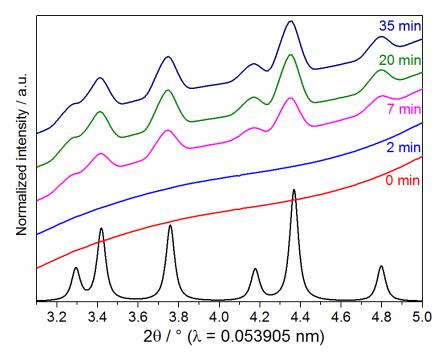


Figure S13: Time-resolved *in-situ* XRD patterns measured at the DESY beamline P09 during the formation of [Ce(phen)₂(NO₃)₃] (experiment 5, Table S1) in comparison to the respective calculated pattern^[1].

References

[1] Q. Y. Lin, Y. L. Feng, Z. Kristallogr., 2003, 218, 531