Polypyridyl Substituted BODIPY Derivatives; Water Switchable Probes for Imaging Hydrophobic Domains in Cells that Exhibit Halogen Substituent Dependent Localisation.

Ciarán Dolan,^{a,b} Aisling Byrne,^{a,b} Conor Long,^a Krzysztof Czamara,^c Agnieszka Kaczor,^c Malgorzata Baranska^c and Tia E. Keyes^{a,b*}.

^a School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
^b National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
^c Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland and Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
*Corresponding author: tia.keyes@dcu.ie, Tel: +353 (1) 7008185.

215 210 205 200 195 190 185 180 175 170 185 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 ppm

Figure S2: ¹³C NMR spectra of 3 in CDCl₃.

Figure S3: ¹H NMR spectra of 4 in CDCl₃.

Figure S4: ¹³C NMR spectra of 4 in CDCl₃.

Figure S5: ¹H NMR spectra of 5 in CDCl₃.

Figure S6: ¹³C NMR spectra of 5 in CDCl₃.

Figure S7: ¹⁹F NMR spectra of 5 in CDCl₃.

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 1000.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 80 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

DCU_TK_CD-S 1: TOF MS ES+	ample1 1	18 (0.576) 8773	AM (Cen,4, 80.	.00, Ar,1.0,556.2 503.2	8,0.70,LS 1); 238	Sm (Mn, 2x5.00)); Sb (16,1 504.5	15.00); Cn 675	n (18:22	2) 1.	90e3
%501.2514		502.2	2257 502.5864	502.8943	503.5811	504.2	302	504.9	17850	5.2442 505.5723 505.9227 506.2	2622 m/z
501.5	0	502.00	502.50	503.00	503.50	504.00	504.50	0 5	05.00	505.50 506.00	
Minimum: Maximum:			200.0	5.0	-1.5 1000.0						
Mass	Calc.	Mass	mDa	PPM	DBE	Score	Formu	la			
503.2238	503.2	219	1.9	3.9	20.5	1	C31 I	H26 N4	F2	в	

Figure S8:. Mass spectrum of 5.

Figure S10: ¹³C NMR spectra of 6 in CDCl_{3.}

Figure S11: ¹⁹F NMR spectra of 6 in CDCl₃.

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 1000.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 46 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

DCU_TK_CD-S 1: TOF MS ES	Sample2 d2 15 (0.479) +	AM (Cen,4, 8	0.00, Ar,1.0,55	6.28,0.70,LS 661.	1); Sm (Mn, 2x5.0 0398 I	00); Sb	(16,15.0	00); Ci	m (15:	29) 663.(0498		2.53e3
% 658.0432	659.0430 658.4984	659.5162	660.0452 ⁶⁶	0.5536	661.5402	662 2	.0554	662.	5825			663.5686	664.0757
6	58.50 659.00	659.50 (660.00 66	0.50 661	.00 661.50	662	.00	662.5	i0	663.0	00	663.50	664.00
Minimum: Maximum:		200.0	5.0	-1.5 1000.0									
Mass	Calc. Mass	mDa	PPM	DBE	Score	Form	ıla						
659.0430	659.0429	0.1	0.2	20.5	1	C31	H24	ви	14 1	F2 H	Br2		

Figure S12: Mass spectrum of 6.

Figure S15: ¹⁹F NMR spectra of 7 in CDCl₃.

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 1000.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 73 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

DCU_TK_CD-S 1: TOF MS ES+	ample3 9 (0.285)	AM (Cen,4, 80.00,	Ar,1.0,556.28	8,0.70,LS 1);	Sm (Mn, 2x5 755.0128	.00); Sb (16,15.00 755.9860)); Cm	(8:11) 756.66	55			1.63e3
751.5233 0 752	752.4387	52.9489 753.00	754.0220	754.3440	755.00	755.6770			756.96	86 00	757.6533	758.3010 m/z 8.00
Minimum: Maximum:		200.0	5.0	-1.5 1000.0								
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formula						
755.0128	755.0152	-2.4	-3.1	20.5	1	C31 H24	4 B	N4	F2	I2		

Figure S16: Mass spectrum of 7.

Figure S19: ¹⁹F NMR spectra of 8 in CDCl₃.

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 1000.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 74 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

DCU_TK_CD-Sample4 9 (0.285) AM (Cen,4, 80.00, Ar,1.0,556.28,0.70,LS 1); Sm (Mn, 2x5.00); Sb (16,15.00); Cm (9:13)

1: TOF MS ES+				479.2234										1.64e3
477.9143	478.2296						480.230	⁴⁸	0.53	50				
0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	4	78.5988	478.9155		479.5412	479.9246					480.8860)	481.2389	481.5370 m/z
478.00	478.	.50	479.0	0	479.50	480.00		48	0.50		48	1.00	10	481.50
Minimum: Maximum:		2	00.0	5.0	-1.5 1000.0									
Mass	Calc. Mas	s m	īDa	PPM	DBE	Score	Form	ıla						
479.2234	479.2219	1	.5	3.2	18.5	1	C29	H26	в	N4	F2			

Figure S20: Mass spectrum of 8.

Figure S23: ¹⁹F NMR spectra of 9 in CDCl₃.

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 1000.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

45 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

DCU_TK_CD-Sample5 9 (0.286) AM (Cen,4, 80.00, Ar,1.0,556.28,0.70,LS 1); Sm (Mn, 2x5.00); Sb (16,15.00); Cm (8:12) 1; TOF MS ES+ 637.0424 638.0466^{638.5581} 639.0408 1.45e3

%_633.5349 0634.1	634.5251 634.5251 00 63	5.0439	636.0402 636. 636.00	5463 637.0	637.5475 637.6475 638	00 639	63! 9.00	9.541564	10.0472 ₆₄₀	.5652 641.00	641.5734 m/z
Minimum: Maximum:		200.0	5.0	-1.5 1000	. O						
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formula	a				
635.0439	635.0429	1.0	1.6	18.5	5 1	C29 H2	24 B	N4 F	72 Br2		

Figure S24: Mass spectrum of (9).

Figure S27: ¹⁹F NMR spectra of **10** in CDCl₃.

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 1000.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 134 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

DCU_TK_CD-S 1: TOF MS ES+	ample6 10 (0.33	4) AM (Cen,4, 80.00 731.), Ar,1.0,556.28,0.70,LS 1); Sm (Mn, 2x5.00); Sb (16,15.00); Cm (10:12) 0149 732.6 731.9926						.6444	6444 90 			
0	730.3806	731	.00	731.3153 73	31.6571	732.00	- 1		732	2.50	ļ.,	732.973	9 733.2052
Minimum: Maximum:		200.0	5.0	-1.5 1000.0									
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formul	a						
731.0149	731.0152	-0.3	-0.4	18.5	1	C29 H	124	В	N4	F2	12		

Figure S28: Mass spectrum of 10.

Figure S29: Overlaid low temperature (77K) emission spectra of 1,10-phenanthrolyl BODIPYbased derivatives (**5-7**) in butyronitrile:propionitrile (5:4 v/v).

Figure S30: Overlaid low temperature (77K) emission spectra of 2,2'-bipyridyl BODIPY-based derivatives (**8-10**) in butyronitrile:propionitrile (5:4 v/v).

Figure S31: Normalised solid state emission spectra of (left) 5-7 and (right) 8-10 after 473 nm excitation using Raman spectroscopy. Solid state samples were simply deposited on a glass microscope slide and resulting fluorescence spectra were recorded.

Figure S32: Overlaid absorbance spectra of 1,10-phenanthrolyl BODIPY-based derivatives (5-7) in H_2O (10 μ M concentrations).

Figure S33: Overlaid absorbance spectra of 2,2'-bipyridyl BODIPY-based derivatives (8-10) in H_2O (10 μ M concentrations).

Figure S34: Absorbance and emission spectra (inset) of (A) 1,10-phenanthrolyl BODIPYbased derivatives (**5-7**) and (B) 2,2'-bipyridyl BODIPY-based derivatives (**8-10**) in DCM (10 μ M). Emission spectra were recorded by exciting each sample at its maximum visible absorbance and slit widths were kept constant at 2.5 nm.

ES	BLYP	Electron Density Maps BLYP	Cam- B3LYP	Electron Density Maps cam- B3LYP	B3LYP	Electron Density Maps B3LYP
1	2.3945 eV 517.78 nm f=0.000 0		3.0172 eV 410.92 nm f=0.510 3		2.9942 eV 414.08 nm f=0.460 5	
2	2.5038 eV 495.18 nm f=0.000 5		3.9221 eV 316.12 nm f=0.043 7		3.3768 eV 367.17 nm f=0.002 3	
3	2.5883 eV 479.01 nm f=0.001 9		4.2066 eV 294.74 nm f=0.051 1		3.3999 eV 364.67 nm f=0.000 1	

7	6	5	4
3.0137 eV 411.40 nm f=0.259 6	2.8541 eV 434.41 nm f=0.230 4	2.8223 eV 439.31 nm f=0.002 6	2.6259 eV 472.16 nm f=0.000 5
4.5151 eV 274.60 nm f=0.003 8	4.4834 eV 276.54 nm f=0.012 6	4.4147 eV 280.84 nm f=0.000 4	4.4032 eV 281.58 nm f=0.002 5
3.8701 eV 320.36 nm f=0.000 0	3.6899 eV 336.01 nm f=0.030 2	3.5955 eV 344.83 nm f=0.001 1	3.4568 eV 358.67 nm f=0.052 6

8	3.0399 eV 407.86 nm f=0.000 5	4.5957 eV 269.79 nm f=0.236 1	3.9221 eV 316.12 nm f=0.000 1	ja ja ja ja ja ja ja	
9	3.0430 eV 407.45 nm f=0.000 9	4.6861 eV 264.58 nm f=0.000 5	3.9336 eV 315.19 nm f=0.001 0	, in	
1 0	3.1493 eV 393.69 nm f=0.022 0	4.9758 eV 249.17 nm f=0.000 0	3.9537 eV 313.59 nm f=0.001 3	ý ý	
1 1	3.2290 eV 383.97 nm f=0.000 0	5.0118 eV 247.38 nm f=0.002 0			
1 2	3.2682 eV 379.37 nm f=0.000 5	5.0206 eV 246.95 nm f=0.041 0			

	3.2999	5.1848		
	eV	eV		
1	375.72	239.13		
3	nm	nm		
	f=0.000	f=0.001		
	1	1		
	3.3755	5.2469		
	eV	eV		
1	367.30	236.30		
4	nm	nm		
	f=0.015	f=0.981		
	7	7		
	3.4211	5.2796		
	eV	eV		
1	362.41	234.84		
5	nm	nm		
	f=0.000	f=0.122		
	4	2		
	3 4656	5 3199		
	050- 4V	5.5155 ۵۷		
1	357 76	233.06		
6		233.00 nm		
	f=0.000	f=0 102		
	2	7		
	5	,		
	3.4704	5.3264		
	eV	eV		
1	357.26	232.77		
7	nm	nm		
	f=0.000	f=0.183		
	7	0		
	3.4799	5.3602		
	eV	eV		
1	356.29	231.31		
8	nm	nm		
	f=0.001	f=0.025		
	8	5		
	3 4982	5 3943		
1	ی مربح //	لم الم //م		
9	251 12	220 01		
	554.4Z	223.04 nm		

	f=0.002	f=0.228		
	8	8		
	3.5653	5.4116		
	eV	eV		
2	347.75	229.11		
0	nm	nm		
	f=0.001	f=0.039		
	1	9		

Figure S35 Singlet excited state energies for **8** (H_2), **9** (Br_2) and **10** (I_2) and the electron density difference maps for 8 (left) and 10 (right); levels indicated in blue are BODIPY to bipyridyl charge-transfer in character while black indicates BODIPY-based states.

Figure 36: Representative fluorescence and absorbance response of 1,3,5,7-tetramethyl-4bipyridyl-4,4'-difluoroboradiazaindacene **(8)** (10 μ M concentration) on titration with A) copper(II) acetate, B) iron(II) chloride and C) zinc(II) acetate in acetonitrile, up to 3 molar equivalence. Excitation wavelength was 497 nm and emission slit widths were 2.5 nm. Insets shown the corresponding absorbance spectra.

Figure S37: Overlaid fluorescent emission response of **5** (10 μ M concentration) to A) Cu²⁺ metal ions, B) Fe²⁺ metal ions and C) Zn²⁺ metal ions in acetonitrile. Excitation wavelength was 497 nm and emission slit widths were 2.5 nm. Molar equivalence of each metal ion to BODIPY molecule ranged from 0 to a maximum of 3 equivalences.

(6) + Cu²⁺ (5 nm slit widths)

Figure S38: Overlaid fluorescent emission response of **6** (10 μ M concentration) to A) Cu²⁺ metal ions (5 nm slit widths), B) Fe²⁺ metal ions and C) Zn²⁺ metal ions in acetonitrile. Excitation wavelength was 523 nm and emission slit widths were 2.5 nm. Molar equivalence of each metal ion to BODIPY molecule ranged from 0 to a maximum of 3 equivalences.

Figure S39: Overlaid fluorescent emission response of **7** (10 μ M concentration) to A) Cu²⁺ metal ions, B) Fe²⁺ metal ions and C) Zn²⁺ metal ions in acetonitrile. Excitation wavelength was 529 nm and emission slit widths were 5 nm. Molar equivalence of each metal ion to BODIPY molecule ranged from 0 to a maximum of 3 equivalences.

Figure S40: Overlaid fluorescent emission response of **9** (10 μ M concentration) to A) Cu²⁺ metal ions, B) Fe²⁺ metal ions and C) Zn²⁺ metal ions in acetonitrile. Excitation wavelength was 523 nm and emission slit widths were 2.5 nm. Molar equivalence of each metal ion to BODIPY molecule ranged from 0 to a maximum of 3 equivalences.

Figure S41: Overlaid fluorescent emission response of **10** (10 μ M concentration) to A) Cu²⁺ metal ions, B) Fe²⁺ metal ions and C) Zn²⁺ metal ions in acetonitrile. Excitation wavelength was 530 nm and emission slit widths were 5 nm. Molar equivalence of each metal ion to BODIPY molecule ranged from 0 to a maximum of 3 equivalences.

Figure S42: Representative Job plot of emission data, for compound **5** (data Fig S34 B) on addition of Fe²⁺, X is mole fraction of **5** (I is taken from emission intensity at 511 nm) at a constant BODIPY concentration of 10 μ M (1 equiv.) in CH₃CN solution at room temperature.

Figure S43: Fluorescence (background) images and Raman intensity images of live HMEC-1 cells. Shown are results obtained for control cells and BODIPY (**5** and **7**) stained cells. Cells were incubated with 10 μ M of each dye for 24 h prior to obtaining Raman spectra. A 532 nm laser line was used to excite the compounds. A sampling step of 0.4 μ m and integration time of 0.7-1.0 s was used to obtain the Raman spectra.

Figure S44: Fluorescence background images and Raman generated intensity images of fixed HMEC-1 cells. Shown are results obtained for control cells and BODIPY (**5** and **7**) stained cells. Cells were incubated with 10 μ M of each dye for 24 h and were fixed using 2.5 % glutaraldehyde prior to obtaining Raman spectra. A 532 nm laser line was used to excite the compounds. A sampling step of 0.4 μ m and integration time of 0.7-1.0 s was used to obtain the Raman spectra.