Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017





Fig. 1S Hydrogenous nuclear magnetic resonance spectroscopy



Fig. 2S wide-angle XRD patterns for Fe<sub>3</sub>O<sub>4</sub>.



Fig. 3S Magnetic Hysteresis for MMS at 293K.



Fig. 4S TEM images of MMIOC for MMS.

| 元素↩   | 重量↩         | 原子↩                        | ¢  |
|-------|-------------|----------------------------|----|
| ÷     | 百分比↩        | 百分比↩                       | ę  |
| O K+2 | <b>66</b> 🕫 | <b>79.9</b> ₄ <sup>∋</sup> | ¢2 |
| Si K₽ | 24.6₽       | <b>16.9</b> ₽              | ¢  |
| Fe L₽ | 9.4+2       | 3.2↔                       | ç  |
| 总量₽   | 100.00+7    | <b>100</b> + <sup>3</sup>  | ¢  |
|       |             |                            |    |



Fig. 5S EDS of MMIOC for MMS



Fig. 6S Fe  $2p_{3/2}$  XPS spectra for (A) MMS and (B) Fe<sub>3</sub>O<sub>4</sub>

| Catalysts                             | $\mathbf{S}_{\mathbf{i}}(\mathbf{2n})$ | O(1S) — | $Fe(2p_{3/2})$ |        |        |        |
|---------------------------------------|----------------------------------------|---------|----------------|--------|--------|--------|
|                                       | SI(2p)                                 |         | Fe(III)        | %      | Fe(II) | %      |
| MMS(B.U.)                             | 154                                    | 532.75  | 711.25         | 85%    | 710    | 15%    |
| MMS(A.U.)                             | 154                                    | 532.60  | 712.12         | 90%    | 710.39 | 10%    |
| Fe <sub>3</sub> O <sub>4</sub> (B.U.) | ~                                      | 530.5   | 714.66         | 57.81% | 711.49 | 42.19% |
| Fe <sub>3</sub> O <sub>4</sub> (A.U.) | ~                                      | 530.1   | 712.61         | 67%    | 710.25 | 33%    |

Table 1S Binding energies (B.E.) in eV ( $\pm 0.1$ ) for MMS and Fe<sub>3</sub>O<sub>4</sub> before (B.U.) and after (A.U.) use



Fig. 7S Degradation effect of various catalysts: (a) Fe<sub>3</sub>O<sub>4</sub>; (b) P7/3; (c) F7/3; (d) P8/2; (e) F8/2; (f) MMS; (■)0.05g L<sup>-1</sup>; (●)0.1g L<sup>-1</sup>; (▲)0.2g L<sup>-1</sup>; (♥)0.5g L<sup>-1</sup>; (♦)1g L<sup>-1</sup>; (★)1.5g L<sup>-1</sup>; (○)2g L<sup>-1</sup>; (□)4g L<sup>-1</sup>; Expect investigated parameter, others fixed at [RhB] = 1 mM; [PS] = 40 mM; initial pH = 7.0; T = 25°C.





Fig. 8S Decolorization effect of different PS dosage: (a) Fe<sub>3</sub>O<sub>4</sub>; (b) P8/2; (c) F8/2; (d) MMS; ( $\blacksquare$ )5mM; ( $\bullet$ )10mM; ( $\blacktriangle$ )20mM; ( $\checkmark$ )30mM; ( $\blacklozenge$ )40mM. Expect investigated parameter, others fixed at [RhB] = 1 mM; [Catalyst] = 2.0 g L<sup>-1</sup>; initial pH = 7.0; T = 25°C.



Figure 9S Effect of various catalysts on RhB degradation in different  $Fe_xO_y/PS$  systems. Expect investigated parameter, others fixed at [RhB] = 1

mM; [Catalyst] = 2.0 g L<sup>-1</sup>; [PS] = 40 mM; initial pH = 7.0;  $T = 25^{\circ}$ C.