MoS₂/Ni₃S₂ Nanorod Arrays Well-aligned on Ni Foam: A 3D Hierarchical Efficient Bifunctional Catalytic Electrode for Overall Water Splitting

Nan Zhang^a*, Junyu Lei^b, Jianpeng Xie^a, Haiyan Huang^a, Ying Yu^a*

 ^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing, P. R. China, 102249, TEL: +86-010-89739132

^b Petrochemical Research Institute, PetroChina, Beijing, P. R. China, 100195

Corresponding authors: E-Mail: zhangnan@cup.edu.cn; yybjpudhx@foxmail.com

Figure S1. Cyclic voltammogram for the potential calibration procedure of the reference electrode -- Hg/HgO in 1.0 M KOH solution.

Figure S2. The SEM images of bare Ni foam (NF) at different magnifications.

Figure S3. (a, b, c) The SEM images, (d) SEM and the corresponding elemental mapping images, (e) the EDX spectrum, and (f) the XRD pattern of MoS_2/Ni_3S_2 (NP).

Figure S4. The SEM images of $MoS_2/Ni_3S_2/NF$ (a) before and (b) after the ultrasonication treatment for 30 min.

Figure S5. The EDX spectrum of MoS_2/Ni_3S_2 nanorods.

Figure S6. The SEM and the corresponding elemental mapping images of $MoS_2/Ni_3S_2/NF$ 3D electrode.

Figure S7. (a, b, c) The SEM images of Ni_3S_2/NF , (d) the EDX spectrum of Ni_3S_2/NF .

Figure S8. The elemental mapping images of the edge of a MoS_2/Ni_3S_2 nanorod.

Figure S9. SEM images of (a) $MoS_2/Ni_3S_2/NF$ (Mo:S=0.5:10), (b) $MoS_2/Ni_3S_2/NF$ (Mo:S=1:10), (c) $MoS_2/Ni_3S_2/NF$ (Mo:S=2:10) and (d) $MoS_2/Ni_3S_2/NF$ (Mo:S=3:10).

Figure S10. (a) HER and (b) OER polarization curves of $MoS_2/Ni_3S_2/NF$ (Mo:S=0.5:10), $MoS_2/Ni_3S_2/NF$ (Mo:S=1:10), $MoS_2/Ni_3S_2/NF$ (Mo:S=2:10) and $MoS_2/Ni_3S_2/NF$ (Mo:S=3:10).

Figure S11. The cyclic voltammogram of the $MoS_2/Ni_3S_2/NF$ which consists of a forward scan and a backward scan. While due to the strong oxidative peak in forward scan, it is difficult to confirm the applied potential when the corresponding current density is below 165 mA/cm². Therefore, the backward scan was employed to assess the OER activities of the applied electrocatalysts. The onset potential lies at the zero current point when oxygen generation occurred. Overpotential is defined relatively to the thermodynamic potential for OER reaction of 1.23 V versus reversible hydrogen electrode (RHE). As a consequence, $MoS_2/Ni_3S_2/NF$'s onset potential is approximately 1.439 V, and its onset overpotential is approximately 209 mV.

Figure S12. A presentative photograph of the system depicting H_2 (left) and O_2 (right) generation during overall water electrolysis.

Element	Wt%	At%
Мо	8.05	4.05
S	29.86	44.93
Ni	62.09	51.02

Table S1. The composition of MoS_2/Ni_3S_2 nanorods measured through EDX.

Table S2. Comparison of HER, OER and overall water splitting performance of the recently reported non-noble-based bifunctional electrocatalysts.

		a ,	HER		OER		Full water splitting	
Catalyst	Electrolyte	Scan rate	Overpotential@onset,	Tafel slope	Overpotential@onset,	Tafel slope	Potential@	Ref.
		(mV/s)	10 mA cm ⁻² , (mV)	(mV dec ⁻¹)	10 mA cm-2, (mV)	(mV dec-1)	10 mA cm^{-2} , (V)	
NiMo-alloy	1M KOH	2	60, 92	76	300, 310	47	1.64	[1]
Ni _{0.9} Fe _{0.1} /NC	1M KOH	10	-, 219	111	-, 330	45	1.58	[2]
CoOx/CN	1M KOH	5	85, 232	115	-, 260	-	1.55@20 mA cm ⁻²	[3]
Co ₃ O ₄ @NCNTs/CP	0.1M KOH	2	260, 380	120	330, 470	-	-	[4]
Co3O4/CF	1M KOH	5	50, -	116	290, -	101	1.91	[5]
NiCo ₂ O ₄	1M NaOH	3	50, 110	49.7	230, 290	53	1.65	[6]
Ni ₂ P/NiO _x	1M KOH	5	-, 220	-	-, 290	47	1.63	[7]
MoO ₂	1M KOH	-	-, 27	41	200, 260	54	1.53	[8]
NiFeO _x	1М КОН	5	40, 88	-	200, 230	31.5	1.51	[9]
NiFe LDH/NF	1M NaOH	1	-, 210	-	-, 240	-	1.7	[10]
Co-P/Cu	1М КОН	2	50, 94	42	300, 345	47	1.74@100 mA cm ⁻²	[11]
CoP-MNA/NF	1M KOH	2	0, 54	51	270, 290	-	1.62	[12]
Ni2P/Ni/NF	1M KOH	2	40, 98	72	190, 200	-	1.49	[13]
CoP/CNTs	0.1M NaOH	5	220, -	56	290, 330	50	-	[14]
Ni5P4/NF	0.5M H ₂ SO ₄	10	-, 140	40	250, -	-	1.70	[15]
CoP/rGO	0.5M H ₂ SO ₄	5	13, 105	50	-, 340	66	1.70	[16]
NiCoP NPs	1M KOH	5	42, 97	50	-, 310	52	1.64	[17]
СоР	1M KOH	2	-, 154	51	270, 354	52	2.0@165 mA cm ⁻²	[18]
Co-N _x	0.1M KOH	0.5	-, 220	81	-, 270@5 mA cm ⁻²	83.3	-	[19]
TiN@Ni3N NW	1М КОН	5	15, 21	42.1	290, 350	93.7	1.64	[20]
NiSe ₂ /Ti	1M KOH	5	20, 96	82	270, 300@20 mA cm ⁻²	82	1.66	[21]
Co _{0.13} Ni _{0.87} Se ₂ /Ti	1М КОН	5	-, 64	63	-, 350@100 mA cm ⁻²	94	1.62	[22]
	0.514.11.60	2	64, 190	110	350, 430	61	-	[23]
$Co_9S_8@MoS_2/CNFs 0.5M H$	0.5IVI H ₂ SO ₄	$5101 H_2 SO_4 Z$			(test in 1M KOH)			
Ni ₂ S ₃ /NF	1М КОН	50	-, 223	-	-,260	-	1.76@13 mA cm ⁻²	[24]
Ni-Co-S NS/CF	1M KOH	5	-, 140	96	-, 363@100 mA cm ⁻²	109	1.67	[25]
Zn _{0.76} Co _{0.24} S/CoS ₂	1М КОН	5	170, 238@20 mA cm ⁻ ²	164	316, 330@20 mA cm ⁻²	79	1.66	[26]
Ni2.3%-CoS2/CC	1М КОН	2	136, 231@100 mA cm ⁻²	106	300, 510@100 mA cm ⁻²	119	1.66	[27]
NiS/NF	1М КОН	5	-, 158@20 mA cm ⁻²	83	320, 340@50 mA cm ⁻²	89	1.64	[28]
NiCo ₂ S ₄ NW/NF	1M KOH	10	-, 210	58.9	-, 260	40	1.63	[29]
							1.62 (Pt-NF as	
20 nm BSCF-NF	0.1M KOH	5	-, -	-	-, 500	73	cathode in 1M KOH)	[30]
$SrNb_{0.1}Co_{0.7}Fe_{0.2}O_{3-\delta}$	0.1M KOH	5	150, 262	134	290, 389	61	1.68	[31]
perovskite nanorods	1M KOH	-	232	103	370	48		
MoS ₂ /Ni ₂ S ₃ /NF	1M KOH	5	50, 187	90	209, 217	38	1.47	This work

2746	@100 mA cm ⁻² ,	275@100 mA cm ⁻² ,	1.59@100 mA cm ⁻²
3000	@200 mA cm ⁻² ,	313@200 mA cm ⁻² ,	1.64@200 mA cm ⁻²
320	@300 mA cm ⁻²	335@300 mA cm ⁻²	1.66@300 mA cm ⁻²

REFERENCES

- J. Tian, N. Cheng, Q. Liu, X. Sun, Y. He and A. M. Asiri, J. Mater. Chem. A, 2015, 3, 20056-20059.
- X. Zhang, H. Xu, X. Li, Y. Li, T. Yang and Y. Liang, Acs Catal., 2016, 6, 580-588.
- H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.
- T. Sharifi, E. Gracia-Espino, X. Jia, R. Sandstrom and T. Wagberg, Acs Appl. Mater. Inter., 2015, 7, 28148-28155.
- S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhu and H. Fu, *Chem. Commun.*, 2015, 51, 8066-8069.
- X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang and Z. Lin, *Angew. Chem. Int. Ed.*, 2016, **55**, 6290-6294.
- L.-A. Stern, L. Feng, F. Song and X. Hu, *Energy Environ. Sci.*, 2015, 8, 2347-2351.
- Y. Jin, H. Wang, J. Li, X. Yue, Y. Han, P. K. Shen and Y. Cui, *Adv. Mater.*, 2016, 28, 3785-3790.
- H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin and Y. Cui, *Nature Communications*, 2015, 6.
- J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan and M. Graetzel, *Science*, 2014, 345, 1593-1596.
- N. Jiang, B. You, M. Sheng and Y. Sun, Angew. Chem. Int. Ed., 2015, 54, 6251-6254.
- 12. Y.-P. Zhu, Y.-P. Liu, T.-Z. Ren and Z.-Y. Yuan, *Adv. Funct. Mater.*, 2015, 25, 7337-7347.
- B. You, N. Jiang, M. Sheng, M. W. Bhushan and Y. Sun, *Acs Catal.*, 2016, 6, 714-721.
- 14. C.-C. Hou, S. Cao, W.-F. Fu and Y. Chen, Acs Applied Materials & Interfaces, 2015, 7, 28412-28419.
- 15. M. Ledendecker, S. K. Calderon, C. Papp, H.-P. Steinrueck, M. Antonietti and M.

Shalom, Angew. Chem. Int. Ed., 2015, 54, 12361-12365.

- 16. L. Jiao, Y.-X. Zhou and H.-L. Jiang, Chemical Science, 2016, 7, 1690-1695.
- 17. C. Wang, J. Jiang, T. Ding, G. Chen, W. Xu and Q. Yang, Advanced Materials Interfaces, 2016, **3**.
- 18. B. You, N. Jiang, M. Sheng, S. Gul, J. Yano and Y. Sun, *Chem. Mater.*, 2015, 27, 7636-7642.
- B. Bayatsarmadi, Y. Zheng, Y. Tang, M. Jaroniec and S.-Z. Qiao, *Small*, 2016, 12, 3703-3711.
- 20. Q. Zhang, Y. Wang, Y. Wang, A. M. Al-Enizi, A. A. Elzatahry and G. Zheng, J. Mater. Chem. A, 2016, 4, 5713-5718.
- Z. Pu, Y. Luo, A. M. Asiri and X. Sun, Acs Appl. Mater. Inter., 2016, 8, 4718-4723.
- 22. T. Liu, A. M. Asiri and X. Sun, Nanoscale, 2016, 8, 3911-3915.
- 23. H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao and X. Zhang, *Adv. Mater.*, 2015, 27, 4752-4759.
- 24. L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J. Am. Chem. Soc., 2015, 137, 14023-14026.
- 25. T. Liu, X. Sun, A. M. Asiri and Y. He, *Int. J. Hydrogen Energy*, 2016, **41**, 7264-7269.
- Y. Liang, Q. Liu, Y. Luo, X. Sun, Y. He and A. M. Asiri, *Electrochim. Acta*, 2016, 190, 360-364.
- W. Fang, D. Liu, Q. Lu, X. Sun and A. M. Asiri, *Electrochem. Commun.*, 2016, 63, 60-64.
- 28. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang and J. Wang, *Chemical Communications*, 2016, **52**, 1486-1489.
- A. Sivanantham, P. Ganesan and S. Shanmugam, *Adv. Funct. Mater.*, 2016, 26, 4661-4672.
- G. Chen, W. Zhou, D. Guan, J. Sunarso, Y. Zhu, X. Hu, W. Zhang and Z. Shao, *Sci. Adv.*, 2017, 3, e1603206.
- 31. Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen, Q. Zhong, M. Liu and Z. Shao, *Adv.* 18

Energy Mater., 2017, 7, 1602122.