[Supporting information]

Antibacterial and Biocompatible ABA-Triblock Copolymers Containing Perfluoropolyether and Plant-Based Cardanol for Versatile Coating Applications

Yong-Seok Choi^{‡†}, Na Kyung Kim^{‡†}, Hyo Kang^{††}, Hyun-Ki Jang[§], Noh, Myungkyung [§], Jinseok Kim[†], Da-Jung Shon[†], Byung-Soo Kim^{†, §}, and Jong-Chan Lee^{*†}

[†]School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea

^{††}Dong-A University, 37 Nakdong-Daero 550beon-gil, Saha-gu, Busan 604-714, Republic of Korea[,]

[§]Interdisciplinary program for bioengineering, Seoul National University, Shilim-9-Dong, Gwanak-Gu, Seoul 151-744, Republic of Korea

[‡] These authors contributed equally.

* Corresponding author: J.-C. Lee (E-mail: jongchan@snu.ac.kr, Phone: +82 2 880 7070, Fax: +82 2 888 1604) Synthesis of 2-hydroxy-3-cardanylpropyl methacrylate (HCPM). To a DMAc solution (30 mL) of cardanol (10 g, 33 mmol) and potassium hydroxide (1.85 g, 33 mmol), glycidyl methacrylate (9.44 g, 66 mmol) was added and reacted in nitrogen (N₂) atmosphere for 24 h at room temperature. After the reaction was finished with dropping few drops of a concentrated HCl solution, DMAc was evaporated. The crude product was dissolved in methylene chloride (MC) and transferred to a separatory funnel. After extraction with 0.5 *N* HCl solution, the MC layer was dried over anhydrous magnesium sulfate and filtered. The obtained product was purified by silica gel column chromatography (ethyl acetate : *n*-hexane = 1 : 6 vol%). The yield was 49 % (7.18 g).

¹H NMR (300 MHz, CDCl₃, trimethylsilane (TMS) ref): $\delta = 0.88$ (t, J = 6.78 Hz, 3 H, – CH₃), 1.20-1.40 (m, CH₃(CH₂)₁₂CH₂–), 1.60 (m, 2 H, CH₃(CH₂)₁₂CH₂CH₂–), 1.97 (s, 3 H, – OC(O)C(CH₃)=CH₂), 2.02 (m, –CH₂CH₂CH₂CH=CHCH₂–), 2.57 (t, J = 8.04 Hz, 2 H, – OC₆H₄CH₂–), 2.75-2.90 (m, –CH₂CH=CHCH₂CH=CH-), 3.94-4.40 (m, 5 H, – OCH₂CH(OH)CH₂OC(O)–), 5.20-5.50 (m, –CH₂CH=CHCH₂–), 5.62 and 6.26 (s, 2 H, – OC(O)C(CH₃)=CH₂), 6.67-6.83 (m, 3 H, aromatic), 7.19 (t, J = 7.5 Hz, 1 H, aromatic).

FT-IR: 3471 cm⁻¹ (O-H stretching vibration), 3010 cm⁻¹ (C-H vibration of the unsaturated hydrocarbon), 1720 cm⁻¹ (C=O stretching vibration (α , β -unsaturated ester), 1261 cm⁻¹ (C(Ar)–O–C asymmetric stretching vibration (*m*-alkyl phenol)), 1049 cm⁻¹ (C(Ar)–O–C symmetric stretching vibration (*m*-alkyl phenol)), 775 cm⁻¹ (–CH₂– rocking vibration), 721 cm⁻¹ (–(CH₂)_{*n*–}, *n*>3; rocking vibration), 694 cm⁻¹ (aromatic out of plane C–H deformation vibration of *m*-substituted benzene).

Mass m/z calculated C₂₈H₄₄O₄⁺: 444.32, found 444.

Samples	Calculated M_n^a	Content of HCPM in polymer (wt%)
PHCPMF2	3,700	48.6
PHCPMF4	5,400	64.8
PHCPMF12	12,300	84.6

Table S1. Calculated molecular weight (M_n) and content of HCPM in PHCPMF#s

^aDetermined by ¹H NMR.

Figure S1. FT-IR/ATR spectra of E10H after and before modification.

Figure S2. ¹H NMR spectrum of crude PHCPMF12 obtained after 18 h polymerization. (Mixture of PHCPMF12 and HCPM)