Supporting Information

Facile fabrication of ultra-light and highly resilient PU/RGO foams for microwave

absorption

Chunmei Zhang^{a,+}, Hua Li^{a,b,+,*}, Zhangzhi Zhuo^c, Roberto Dugnani^d, Chongyang Sun^a, Yujie

Chen^{a,*}, Hezhou Liu^{a,b}

^aState Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai 200240, China.

^bCollaborative Innovation Center for Advanced Ship and deep-Sea Exploration, Shanghai Jiao Tong University.

^cWuHu State-owned Factory of Machining, Jiujiang District Wanli Village No. 99, WuHu 241000, China.

^dUniversity of Michigan-Shanghai Jiao Tong University Joint Institute.

*Corresponding author: Hua Li (email: <u>lih@sjtu.edu.cn</u>) or Yujie Chen (email: <u>yujiechen@sjtu.edu.cn</u>)

⁺These authors contributed equally to this work.

Figure S1 SEM images of PU/RGO foams with different loadings of RGO: (a) and (b) sample S-3, (c) and (d) sample S-6, (e) and (f) sample S-9, (g) and (h) sample S-12, and (i) and (j) sample

Figure S2 The photos of the PU foam and the prepared PU/RGO foams with different RGO loadings

Figure S3 Schematic illustration of the dissipation routes of microwaves irradiated in the PU/RGO foams

Figure S4 The variation curves of (a) SE_{Total} , (b) SE_A , and (c) SE_R of samples with different RGO loadings in the frequency range of 2 - 18 GHz

The samples used for electromagnetic shielding performance measurements were made into

toroidal-shaped specimens with an outer diameter of 7.0 mm and an inner diameter of 3.04 mm. The values of S parameters were measured in the frequency range of 2–18 GHz with a thickness of 4 mm by using a vector network analyzer (Agilent, 85050D) for further calculation.

From the measured scattering parameters, the power coe \Box cients of reflectivity (R), transmissivity (T), and absorptivity (A) can be calculated. The EMI SE is the sum of the reflection from the material surface (SE_R), the absorption of electromagnetic energy (SE_A), and the multiple internal reflections (SE_M) of electromagnetic radiation. The reflection is related to the impedance mismatch between air and absorber; the absorption can be regarded as the energy dissipation of the electromagnetic microwave in the absorber; and the multiple reflections are considered as the scattering effect of the inhomogeneity within the materials [1-3]. The attenuation caused by multiple reflections can be ignored when shielding caused by absorption is greater than 10 dB, which indicates that most of the re-reflected wave will be absorbed within the shield.

The SE_{Total} , SE_A and SE_R are expressed in dB, and can be calculated by using Equations:

$$R + T + A = 1 \tag{1}$$

$$R = |S_{11}|^2$$
(2)

$$T = |S_{21}|^2$$
(3)

$$SE_A = -10\log(\frac{T}{1-R}) \tag{4}$$

$$SE_{R} = -10\log(1-R) \tag{5}$$

$$SE_{total} = -10\log(P_t / P_i) = SE_A + SE_R + SE_M$$
(6)

in which P_i and P_t are the incoming and transmitted powers of electromagnetic waves [4,5].

The variation curves of SE_{Total} , SE_A and SE_R of composites with different RGO loadings in the frequency range of 2 - 18 GHz are shown in Figure S4. It can be seen that the values of SE_A and SE_{Total} increase with frequency, and moreover, with increasing RGO content, the values of SE_A and SE_{Total} are improved correspondingly, which is similar to the relationship between electrical conductivity and filler content and is consistent with the EMI shielding theory [6-9]. The SE_{Total} values of samples S-3, S-6, S-9, S-12, and S-15 are 0.63-3.24, 1.82-4.79, 3.67-9.04, 5.34-12.22 and 6.54-15.03

respectively. Sample S-15 exhibits the best electromagnetic shielding performance, which is due to the improved conductivity with increasing RGO loading. For the composite foam S-12, the values of SE_{total} , SE_A , and SE_R at 10 GHz are 7.48, 6.45 and 1.03 dB respectively, confirming that microwave absorption is the dominant contribution to the total EMI SE of the PU/RGO foams. We suggest that the two-dimensional structure of graphene as well as the large surface area and interface area in PU/RGO foam composites are beneficial for the multiple reflection of the incident microwaves inside the foam composites and consequently responsible for the absorption-dominant EMI shielding [2,3,8].

Figure S5 The stress-strain curves of PU/RGO foams with different RGO loading levels at a strain of 90%: (a) sample S-3, (b) sample S-6, (c) sample S-9, (d) sample S-12, and (e) sample S-15. (f) The cyclic stress-strain curves of sample S-15 at 50% strain.

Figure S6 The twist and compression pictures of the prepared PU/RGO foams

References

- 1 A.-P. Guo, X.-J. Zhang, S.-W. Wang, J.-Q. Zhu, L. Yang and G.-S. Wang, *ChemPlusChem*, 2016, **81**, 1305–1311.
- 2 H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He and Z.-Z. Yu, ACS Appl. Mater. Interfaces, 2011, **3**, 918–924.
- 3 Z. Chen, C. Xu, C. Ma, W. Ren and H.-M. Cheng, Adv. Mater., 2013, 25, 1296–1300.
- 4 A. Fletcher, M. C. Gupta, K. L. Dudley and E. Vedeler, *Compos. Sci. Technol.*, 2010, **70**, 953–958.
- 5 Y. Yang and M. C. Gupta, Nano Lett., 2005, 5(11), 2131-2134.
- 6 Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo and Y. Chen, *Carbon*, 2007, 45, 821–827.
- 7 J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao and Y. Chen, *Carbon*, 2009, 47, 922–925.
- 8 J.-M. Thomassin, C. Pagnoulle, L. Bednarz, I. Huynen, R. Jérôme and C. Detrembleur, J. *Mater. Chem.*, 2008, **18(7)**, 792–796.
- 9 N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen and P. C. Eklund, *Nano Lett.*, 2006, 6(6), 1141–1145.