## **Supporting Information**

## Lignocellulosic Biomass-Derived, Graphene Sheet-like Porous Activated Carbon for Electrochemical Supercapacitor and Catechin Sensing

V. Veeramani,<sup>a,b</sup> M. Sivakumar,<sup>b</sup> S.-M. Chen,<sup>b</sup>\* R. Madhu,<sup>c</sup> Hatem R. Alamri,<sup>d</sup> Zeid A. Alothman,<sup>e</sup> Md. Shahriar A. Hossain,<sup>e,f</sup> C.-K. Chen,<sup>b</sup> Yusuke Yamauchi,<sup>e,f</sup> N. Miyamoto,<sup>c</sup> and Kevin C.-W. Wu<sup>a</sup>\*



**Figure S1.** SEM and HR-TEM images of the as-synthesized AC-700 (a and b), and AC-900 (c and d) samples. Inset indicates the corresponding high magnification images.



**Figure S2.** XRD (a), Raman spectroscopy (b),  $N_2$  adsorption/desorption isotherms (c), and Pore size distribution profile studies (d) for as-synthesized AC-700, and AC-900 samples.



Figure S3. XPS full survey spectra for the as-synthesized AC-700, GPAC, and AC-900 samples.



**Figure S4.** (a) CV curves at fixed scan rate 5 mV s<sup>-1</sup> for various electrode. (b) GPAC electrode as a function of scan rate *vs* specific capacitance.



**Figure S5.** (A) GCD profiles of the solid-state ASC (GPAC/PVA/KOH/GPAC) device at one cell, two cell and three cell device connected in series.

| Materials            | Electrolyte                          | Specific                         | Ref       |
|----------------------|--------------------------------------|----------------------------------|-----------|
|                      | -                                    | capacitance (F g <sup>-1</sup> ) |           |
| GHAC-900             | 2.0 M KOH                            | 63                               | [5]       |
| SPC-1000             | 1 M Li <sub>2</sub> SO <sub>4</sub>  | 121                              | [9]       |
| ACSB                 | 6 M KOH                              | 202                              | [37]      |
| EDMCT                | 6 M KOH                              | 90                               | [S1]      |
| Carbon <sub>s2</sub> | 1 M LiOH                             | 204                              | [S2]      |
| ZAC-10               | 1.0 M H <sub>2</sub> SO <sub>4</sub> | 127                              | [\$3]     |
| Coconut kernel       | 1.0 M H <sub>2</sub> SO <sub>4</sub> | 173                              | [S4]      |
| sugarcane            | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 232                              | [\$5]     |
| Rice husk            | 3 M KCl                              | 210                              | [S6]      |
| Corn grains          | 6 М КОН                              | 257                              | [\$7]     |
| GPAC                 | 2.0 М КОН                            | 233                              | This work |

**Table S1.** Comparison of the specific capacitance value with previously reported biomassderived carbon in literatures.



**Figure S6.** (a) Various CA concentrations from 49  $\mu$ M to 950  $\mu$ M. Electrode: GPAC modified GCE. (b) DPV curves of GPAC modified GCE with different concentrations of CA using a standard addition method. Electrolyte: 0.1 M PBS (pH 7.0) solution; scan rate: 50 mV s<sup>-1</sup>.

**Table S2.** Comparison of the analytical parameters with previously reported literatures.

| Electrode Materials                           | Linear Range<br>(µM) | Limit of<br>Detection (µM) | Sensitivity<br>(μΑ/μM.cm²) | Ref          |
|-----------------------------------------------|----------------------|----------------------------|----------------------------|--------------|
| Pt/MnO <sub>2</sub> /f-MWCNT                  | 2-950                | 0.02                       | -                          | [25]         |
| <i>f</i> -MWCNT/YHCF                          | 5–200                | 0.28                       | 1.311                      | [26]         |
| Poly-aspartic acid                            | 0.2-30               | 0.07                       | -                          | [40]         |
| MWCNT                                         | 0.10-2.69            | 0.017                      | -                          | [41]         |
| Ni(II) complex and thiol<br>on gold electrode | 3.31–25.3            | 0.82                       | -                          | [42]         |
| GPAC                                          | 4-368                | 0.67                       | 7.2                        | This<br>work |

## Reference

- [S1] Y. Qu, G. Zan, J. Wang and Q. Wu, J. Mater. Chem. A, 2016, 4, 4296–4304.
- [S2] Y. Li, Q. Zhang, J. Zhang, L. Jin, X. Zhao and T. Xu, Sci. Reports, 2015, 5, 14155.
- [S3] R. Madhu, V. Veeramani, S.-M. Chen, P. Veerakumar, S.-B. Liu and N. Miyamoto, Phys. Chem. Chem. Phys., 2016, 18, 16466—16475.
- [S4] B. Kishore, D. Shanmughasundaram, T. R. Penki, N. Munichandraiah, J. Appl. Electrochem., 2014, 44, 903–916.
- [S5] T. Chou, C. Huang, R. Doong, *Synthetic Metals*, 2014, **194**, 29–37.
- [S6] Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang, H. Xu, *Materials Chemistry and Physics*, 2003, 80, 704–709.
- [S7] M. S. Balathanigaimani, W. G. Shim, M. J. Lee, C. Kim, J. W. Lee, H. Moon, *Electrochem Commun.*, 2008, 10, 868–871.