Supporting Information

Highly sensitive electrochemical IFN-γ aptasensor based on hierarchical graphene/AuNPs electrode interface with a dual enzyme-assisted amplification strategy

Yu Yin,*a Lei Shi,^b Zhenyu Chu^c and Wanqin Jin*^c

^aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China. E-mail: season_july@just.edu.cn. Tel: +86-511-85637630.

^bState Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China.

^cState Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China. E-mail: wqjin@njtech.edu.cn. Tel: +86-25-83172266. Fax: +86-25-83172292.

Fig. S1 The C1s XPS spectrum of GO.

Fig. S2 (A) Cyclic voltammograms of bare GCE, graphene and graphene/AuNPs modified GCE at a scan rate of 50 mV s⁻¹. Inset is the stability test with consecutive 20 cycles. (B) Nyquist diagrams of bare GCE, graphene and graphene/AuNPs modified GCE recorded from 0.1 Hz to 100 kHz. Inset is the related equivalent circuit.

Fig. S3 Cyclic voltammograms of different interfaces, (a) graphene/AuNPs modified electrode, (b) duplex DNA strands and TH molecules immobilized electrode, (c) in the presence of IFN- γ and RecJf exonuclease, (d) hybridization with linker probes, (e) incubation with reporter probes.

Fig. S4 (A) DPV responses of the aptasensor after the incubation with different IFN- γ concentrations (from a to f, 0, 0.1 nM, 0.2 nM, 0.4 nM, 0.5 nM and 0.8 nM respectively). (B) Calibration curve corresponding to peak currents of different IFN- γ concentrations. Inset: the linear relationship between peak currents vs the logarithm of IFN- γ concentrations.

DNA	Sequence $(5' \rightarrow 3')$				
Capture probe	SH/NH2-(CH2)6- GGG TTG GAC ACA ACA CCC AAC ACA ACC AAC				
	CCC				
Aptamer	AAA GGG GTT GGT TGT GTT GGG TGT TGT GTC CAA CCC C				
Linker probe	Biotin-TAG CTT TAG AGA CTG ATG TTG A GGG GTT GGT TGT GTT				
	GGG TGT TGT GTC				
Reporter probe-I	Biotin-T CAA CAT CAG TCT CTA AAG CTA CCA TGT GTT AGC TTT AGA				
	GAC T				
Reporter probe-II	Biotin-T AGC TTT AGA GAC TGA TGT TGA AGT CTC TAA AGC TAA CAC				
	ATG G				

Table S1 Sequences of oligonucleotides used in this work.

Table S2 Performance comparison of various electrochemical IFN-γ aptasensors.

Methods	Techniques	Linear range	Detection limit	Detection time	References
Electro -chemical	SWV	0.06–10 nM	60 pM	~0.5 h	17
	CV	0.1–100 nM	0.1 nM	$\sim 1 h$	18
	SWV	0.01–10 nM	1.14 pM	$\sim 2 h$	55
	DPV	0.5–300 nM	0.3 nM	~5.5 h	56
	SWV	0.06–29.6 nM	77 pM	/	57
	EIS	0.02–0.11 nM	11.56 pM	~0.5 h	58
	DPV	50 fM-3.0 pM	16.3 fM	~3.5 h	59
	DPV	0.005–5 nM	2 pM	$\sim 5 \ h$	This work

^[a]Detection time is calculated from the IFN- γ injection to the readout of the response signal.

References

Y. Liu, N. Tuleouva, E. Ramanculov and A. Revzin, *Anal. Chem.*, 2010, 82, 8131.
H. Zhang, B. Jiang, Y. Xiang, Y. Chai and R. Yuan, *Analyst*, 2012, 137, 1020.

55. J. Xia, D. Song, Z. Wang, F. Zhang, M. Yang, R. Gui, L. Xia, S. Bi, Y. Xia, Y. Li and L. Xia, *Biosens. Bioelectron.*, 2015, **68**, 55.

56. J. Zhao, C. Chen, L. Zhang, J. Jiang and R. Yu, *Biosens. Bioelectron.*, 2012, 36, 129.

57. Y. Chen, T. S. Pui, P. Kongsuphol, K. C. Tang and S. K. Arya, *Biosens*. *Bioelectron.*, 2014, **53**, 257.

S. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. Tang, B. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter and J. C. Claussen, *Acs Sensors*, 2017, 2, 210.
X. M. Miao, C. N. Ko, K. Vellaisamy, Z. B. Li, G. J. Yang, C. H. Leung and D. L. Ma, *Scientific Reports*, 2017, 7.