Supporting Information

Growth Phase Diagram and Upconversion Luminescence Property of

NaLuF₄:Yb³⁺/Tm³⁺/Gd³⁺ Nanocrystals

Yangyang Li,^a Yanhui Dong,^a Tuerxun·Aidilibike,^{ab} Xiaohui Liu,^a Junjie Guo,^a Weiping Qin*^a

a. State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China. E-mail: wpqin@jlu.edu.cn

b. Yili Normal University, Electronic and Information Engineering, Yining, Xinjiang 835000, China.

Fig. S1 EDX spectra of NaLuF₄:20%Yb³⁺, 0.5%Tm³⁺, x%Gd³⁺ (x=0, 5, 10).

Fig. S2 XRD patterns of NaLuF₄:20%Yb³⁺, 0.5%Tm³⁺, x%Gd³⁺ with (a) x=0, (b) x=3, (c) x=5, (d) x=10, (e) x=20, (f) x=30 and the standard diffraction pattern for the β -phase NaLuF₄ (JCPDS 27-0726).

It can be observed from Fig. S2 that all the patterns match well with the standard hexagonal

NaLuF₄ pattern of JCPDS 27-0726, indicating the samples of different Gd³⁺ concentrations are pure β -phase. As shown in Fig. S2b-f, with the doping of Gd³⁺ ions in the host lattice, Lu³⁺ ions are substituted by larger Gd³⁺ ions as a result of expansion in unit-cell volume leading to the diffraction peaks shift towards lower diffraction angles along the horizontal axis.¹ For Figure 3e and f, the peaks showed significantly wider than that of the samples with lower doping concentrations of Gd³⁺ ions, indicating the size of crystal decreases with the increase of impurity ion concentration.

Fig. S3 SEM images of annealed NaLuF₄:20%Yb³⁺, 0.5%Tm³⁺, x%Gd³⁺ with (a) x=0, (b) x=3, (c) x=5, (d) x=10, (e) x=20, (f) x=30.

Fig. S4 Upconversion emission spectra of annealed NaLuF₄:20%Yb³⁺, 0.5%Tm³⁺, x%Gd³⁺ with (a) x=0, (b) x=3, (c)

Fig. S5 XRD patterns of NaLuF₄:20%Yb³⁺, 0.5%Tm³⁺, 10%Gd³⁺ synthesized in different reaction time of (a) 10 min, (b) 15 min, (c) 17 min, (d) 19 min, (e) 21 min, (f) 23 min, (g) 35 min, (h) 65 min and the standard diffraction patterns for the α -phase NaLuF₄ (JCPDS 27-0725) and β -phase NaLuF₄ (JCPDS 27-0726).

Fig. S5 reveals the $\alpha \rightarrow \beta$ phase transition and growth processes of NaLuF₄ NCs in detail through XRD analysis. With increasing the reaction time, α -NaLuF₄ transformed gradually into β -NaLuF₄ with the three main stages: pure α -NaLuF₄ at 10 min, coexistence of α -NaLuF₄ and β -NaLuF₄ from 15 to 21 min, and pure β -NaLuF₄ after 23 min. Notably in figure 5h, obvious narrowing of the diffraction peaks was observed which indicates the size of nanoparticles is relatively large, comparing well with the TEM image in Fig. 3g.

Fig. S6 TEM images of NaLuF₄:20%Yb³⁺, 0.5%Tm³⁺, 10%Gd³⁺ synthesized in different reaction time of (a) 25 min, (b) 35 min, (c) 45 min, (d) 55 min.

Fig. S7 TEM images of NaLuF₄:20%Yb³⁺, 0.5%Tm³⁺, 10%Gd³⁺ synthesized at 285 °C in different reaction time of (a) 20 min, (b) 40 min, (c) 80 min, (d) 100 min, (e) 110 min, (f) 300 min.

Fig. S8 TEM images of NaLuF₄:20%Yb³⁺, 0.5%Tm³⁺, 10%Gd³⁺ synthesized at 295 °C in different reaction time of (a) 15 min, (b) 25 min, (c) 40 min, (d) 50 min, (e) 60 min, (f) 170 min.

Fig. S9 TEM images of NaLuF₄:20%Yb³⁺, 0.5%Tm³⁺, 10%Gd³⁺ synthesized at 315 °C in different reaction time of (a) 5 min, (b) 8 min, (c) 12 min, (d) 40 min.

Reference

S1. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong and X. Liu, *Nature*, 2010, 463, 1061-1065.