Supporting Information for

Mutagenesis and immunological evaluation of group A streptococcal C5a peptidase as an antigen for vaccine development and as a carrier protein for glycoconjugate vaccine design

Hui Li,^a Subo Wang,^a Yisheng Zhao,^a Zonggang Chen,^a Guofeng Gu,^{a,*} and Zhongwu Guo^{a,b,*}

^a National Glycoengineering Research Center, School of Life Science, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China

^b Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States *Corresponding authors. Tel: +86 (531) 88363612, +1 (352) 392 9133; E-mail: <u>guofenggu@sdu.edu.cn</u>, <u>zguo@chem.ufl.edu</u>

Table of content

I. The primers designed for site-directed mutagenesisPage S2				
II. MS results for the hydrolysis of human C5a peptide by various △ScpAPage S3				
Figure S1. The results for wild-type △ScpAPage S3				
Figure S2. The results for \triangle ScpA ^{D130A} Page S3				
Figure S3. The results for \triangle ScpA ^{N295A} Page S4				
Figure S4. The results for \triangle ScpA ^{S512A} Page S4				
Figure S5. The results for \triangle ScpA ^{D130A,S512A} Page S5				
Figure S6. The results for \triangle ScpA ^{H193A} Page S5				
III. Characterization of GAS trisaccharide hapten 1Page S6				
Figure S7. ¹ H, ¹³ C, and HRMS spectra of GAS trisaccharide 1Page S6-7				
IV. Preparation and characterization of the GAS trisaccharide-protein conjugatesPage S8				
Figure S8. Synthetic scheme for GAS trisaccharide-protein conjugatesPage S8				
Figure S9. MS spectra of \triangle ScpA ^{H193A} and GAS trisaccharide- \triangle ScpA ^{H193A}				
Conjugate 2Page S8				
Figure S10. MS spectra of BSA and GAS trisaccharide-BSA				
conjugate 3 Page S9				
Table S2. The carbohydrate loading of GAS trisaccharide-protein conjugatesPage S9				

I. The primers designed for site-directed mutagenesis

Entry	Mutational site	nrimers	
	widtational site	princis	
1	D130A	forward	5'TGTTGTTGCAGTGATTG <u>C</u> TGCTGGTTTTGA3'
		reverse	3'CTCGACCCTGACAACAACGTCACTAACGAC5'
2	S512A	forward	5'CAAACTTTCTGGAACT <u>GC</u> TATGTCTGCGCC3'
		reverse	3'TGTTCATACGGTTTGAAAGACCTTGA <u>CG</u> AT5'
3	H193A	forward	5' GCTGTCGATCAAGAG <u>GC</u> CGGCACACACG 3'
		reverse	3'TACCATTTTGGCGACAGCTAGTTCTCCCGGC 5'
4	N295A	forward	5' AATATGAGCTTTGGT <u>GC</u> TGCTGCACTAGCTT3'
		reverse	3'TCGATTCCACTAATTATACTCGAAACCA <u>CG</u> ACG5'

 Table S1. The primers designed for site-directed mutagenesis

II. MALDI-TOF MS results for the hydrolysis of human C5a peptide by various △ScpA

Figure S1. MALDI-TOF MS results for (A) human C5a peptide and for the hydrolysis of human C5a peptide (30 μ g/mL) in the presence of truncated wild-type Δ ScpA (B) 1 μ g/mL, (C) 3 μ g/mL and (D) 30 μ g/mL at 20 °C for 30 min.

Figure S2. MALDI-TOF MS results for (A) human C5a peptide and for the hydrolysis of human C5a peptide (30 μ g/mL) in the presence of Δ ScpA^{D130A} (B) 1 μ g/mL, (C) 3 μ g/mL, (D) 30 μ g/mL and (E) 300 μ g/mL at 20 °C for 30 min.

Figure S3. MALDI-TOF MS results for (A) human C5a peptide, (B) \triangle ScpA^{N295A}, and for the hydrolysis of human C5a peptide (30 µg/mL) in the presence of \triangle ScpA^{N295A} (C) 1 µg/mL, (D) 3 µg/mL, (E) 30 µg/mL and (F) 300 µg/mL at 20 °C for 30 min.

Figure S4. MALDI-TOF MS results for (A) human C5a peptide and for the hydrolysis of human C5a peptide (30 μ g/mL) in the presence of Δ ScpA^{S512A} (B) 1 μ g/mL, (C) 3 μ g/mL, (D) 30 μ g/mL and (E) 300 μ g/mL at 20 °C for 30 min.

Figure S5. MALDI-TOF MS results for (A) human C5a peptide, (B) \triangle ScpA^{D130S, S512A}, and for the hydrolysis of human C5a peptide (30 µg/mL) in the presence of \triangle ScpA^{D130S, S512A} (C) 1 µg/mL, (D) 3 µg/mL, (E) 30 µg/mL and (F) 300 µg/mL at 20 °C for 30 min.

Figure S6. MALDI-TOF MS results for (A) human C5a peptide, (B) \triangle ScpA^{H193A}, and for the hydrolysis of human C5a peptide (30 µg/mL) in the presence of \triangle ScpA^{H193A} (C) 1 µg/mL, (D) 3 µg/mL, (E) 30 µg/mL and (F) 300 µg/mL at 20 °C for 30 min.

III. Characterization of GAS trisaccharide hapten 1

Figure S7. NMR and MS spectra of GAS trisaccharide **1**: (A) ¹H-NMR (600 MHz, D₂O), (B) ¹³C-NMR (150 MHz, D₂O), and (C) ESI-TOF HRMS (positive).

IV. Preparation and characterization of the GAS trisaccharide-protein conjugates

Figure S8. Synthetic scheme for GAS trisaccharide-protein conjugates.

Figure S9. MALDI-TOF MS results for (A) \triangle ScpA^{H193A} and (B) trisaccharide- \triangle ScpA^{H193A} conjugate 2

Figure S10. MALDI-TOF MS results for (A) BSA and (B) and trisaccharide-BSA conjugate 3

Table S2. The carbohydrate loading of GAS trisaccharide-protein conjugates