Supplementary Information

The diversities of magnetic behaviors appearing simultaneously in three isomorphism based on 1H-tetrazolylacetic acid ligands

Tong Yan,^{a+} Lin Du,^{*a+} Lin Sun,^b Xiao-Feng Zhang,^a Tao Wang,^a Jing Feng, ^a Jie Zhou,^a and Qi-Hua Zhao ^{*a}

a. Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, School of Chemical Science and Technology · Pharmacy, Yunnan University, Kunming, 650091 PR China.
E-mail: lindu@ynu.edu.cn; qhzhao@ynu.edu.cn; Tel: +86-871-5032929; Fax: +86-871-5032929.
b. Department of Chemistry, Northwest University, Xi'an, Shaanxi, 710069 P.R. China.

Mn1-O1	2.1528(11)	Mn1-O2 ^{#3}	2.1659(10)
Mn1-O1#1	2.1528(11)	Mn1-N1#4	2.3015(12)
Mn1-O2#2	2.1659(10)	Mn1-N1 ^{#5}	2.3015(12)
O1-Mn1-O1	188.12(6)	O2#2-Mn1-N1#4	88.62(4)
O1-Mn1-O2 ^{#2}	178.44(4)	O2 ^{#3} -Mn1-N1 ^{#4}	90.99(4)
O1#1-Mn1-O2#2	91.44(4)	O1-Mn1-N1 ^{#5}	87.54(5)
O1 -Mn1-O2 ^{#3}	91.44(4)	O1 ^{#1} -Mn1-N1 ^{#5}	92.86(5)
O1#1-Mn1-O2#3	178.44(4)	O2#2-Mn1-N1#5	90.99(4)
O2 ^{#2} -Mn1-O2 ^{#3}	89.03(6)	O2 ^{#3} -Mn1-N1 ^{#5}	88.62(4)
O1-Mn1-N1 ⁴	92.86(4)	N1#4-Mn1-N1#5	179.45(6)
O1 ^{#1} -Mn1-N1 ^{#4}	87.54(5)	C3-O1-Mn [#] 1	130.56(9)
C3-O2-Mn1 ^{#3}	131.39(8)	C1-N1-Mn1 ^{#5}	129.47(10)

Table S1. Selected bond lengths (Å) and angle (°) for 1.

Symmetry codes:#1,2-x,+y,3/2-z; #2,+x,-y,-1/2+z; #3,2-x,-y,2-z; #4,-1/2+x,1/2-y,-1/2+z;#5,5/2-x,1/2-y,2-z.

Co1-O2	2.0736(10)	Co1-N4 ^{#4}	2.1731(13)
Co1-O2 ^{#1}	2.0736(10)	Co1-N4 ^{#5}	2.1731(13)
Co1-O1 ^{#2}	2.0881(11)	O1-Co1 ^{#3}	2.0881(11)
Co1-O1 ^{#3}	2.0881(11)	N4-Co1 ^{#6}	2.1731(13)
O2-Co1-O2 ^{#1}	91.69(6)	O1 ^{#3} -Co1-N4 ^{#4}	86.01(5)
O2-Co1-O1 ^{#2}	177.12(4)	O2 ^{#1} -Co1-N4 ^{#5}	88.40(4)
O2 ^{#1} -Co1-O1	290.54(4)	O1 ^{#2} -Co1-N4 ^{#5}	86.01(5)
O2-Co1-O1 ^{#3}	90.54(4)	O1 ^{#3} -Co1-N4 ^{#5}	93.34(5)
O2 ^{#1} -Co1-O1 ^{#3}	177.12(4)	O1 ^{#3} -Co1-N4#4	86.01(5)
O1 ^{#2} -Co1-O1 ^{#3}	87.29(6)	O2 ^{#1} -Co1-N4 ^{#5}	88.40(4)
O2-Co1-N4#4	88.40(4)	O1 ^{#2} -Co1-N4 ^{#5}	86.01(5)
O2 ^{#1} -Co1-N4 ^{#4}	92.23(4)	O1 ^{#3} -Co1-N4 ^{#5}	93.34(5)
O1 ^{#2} -Co1-N4 ^{#4}	93.34(4)	C1-N4-Co1 ^{#6}	129.45(10)

Table S2. Selected bond lengths (Å) and angle (°) for $\mathbf{2}$.

Symmetry codes:

#1,1-x,+y,3/2-z;#2,+x,-y,1/2+z;#3,1-x,-y,1-z;#4,-1/2+x,1/2+y,+z;#5,3/2-x,1/2+y,3/2-z;#6,1/2+x,-1/2+y,+z,-1/2+z,-1/2

7)
7)
4)
7)

Table S3. Selected bond lengths (Å) and angle (°) for 3.

O1-Ni1-O1#1	86.93(8)	O2 ^{#2} -Ni1-N4 ^{#4}	92.75(6)
O1-Ni1-O2#2	176.85(5)	O2#3-Ni1-N4#4	87.80(6)
O1 ^{#1} -Ni1-O2 ^{#2}	90.18(6)	O1-Ni1-N4 ^{#5}	93.25(6)
O1-Ni1-O2#3	90.18(6)	O1 ^{#1} -Ni1-N4 ^{#5}	86.17(6)
O11-Ni1-O2 ^{#3}	176.85(5)	C3-O2-Ni1 ^{#3}	132.24(12)
O22-Ni1-O2 ^{#3}	92.75(8)	C3-O1-Ni1	128.90(13)
O1-Ni1-N4#4	86.17(6)	C1-N4-Ni1#4	129.54(15)
$O1^{\#1}$ -Ni1-N4 ^{#4}	93.25(6)	N3-N4-Ni1#4	124.51(14)
		112 111 1111	

Symmetry codes:#1,1-x,+y,3/2-z; #2,+x,-y,-1/2+z; #3,1-x,-y,2-z; #4,3/2-x,1/2-y,2-z;# 5,-1/2+x,1/2-y,-1/2+z.

	$\theta_1 - 1 /$	θ_1 –2 /	θ_1 –3 /	$ heta_1$ -4 /					
Compound	0	0	0	0	$ heta_2$ / °	$ heta_{3}$ / $^{\circ}$	$ heta_4$ / °	$ heta_{5}$ / °	mode
1	87.54(5)	88.62(4)	90.99(4)	92.86(4)	179.45(6)	112.80(11)	84.486(32)	79.307(53)	Ι
Iso-1	81.90(5)	83.21(5)	96.79(5)	98.10(6)	180.00(1)	113.1(2)	73.202(29)	0.000(85)	II
2	86.01(5)	88.40(4)	92.23(4)	93.34(5)	179.11(6)	112.93(11)	86.176(34)	80.667(45)	Ι
Iso-2	82.48(10)	83.81(9)	96.19(9)	97.52(10)	180.000(1)	113.1(2)	76.814(46)	0.000(152)	II

Table S4. The θ Angles in complexes **1**,**2** and iso-**1**,**2**.

Figure S1. Coordination environment of the Co(II) ion in complex 2 with hydrogen atoms omitted for clarity. Symmetry codes: (i) -x+1, y, -z+3/2; (ii) x, -y, z+1/2; (iii) -x+1, -y, -z+1; (iv) -x+3/2, y+1/2, -z+3/2; (v) x-1/2, y+1/2, z; (vi) x+1/2, y-1/2, z.

Figure S2. Coordination environment of the Ni (II) ion in complex 3 with hydrogen atoms omitted for clarity. Symmetry codes: (i) -x+1, y, -z+3/2;

(ii) x, -y, z-1/2; (iii) -x+1, -y, -z+2; (iv) x-1/2, -y+1/2, z-1/2; (v) -x+3/2, -y+1/2, -z+2.

Figure S3. Coordination environment of the Mn (II) ion in iso-1 with hydrogen atoms omitted for clarity. Symmetry codes: (i) x+1/2, -y+5/2, z-1/2; (ii) -x-1/2, y-1/2, -z+5/2; (iii) x-1/2, -y+5/2, z-1/2; (iv) -x+1/2, y-1/2, -z+5/2; (v) -x, -y+2, -z+2.

Figure S4. Coordination environment of the Co (II) ion in iso-1 with hydrogen atoms omitted for clarity. Symmetry codes: (i) x+1/2, -y+5/2, z-1/2; (ii) -x-1/2, y-1/2, -z+5/2; (iii) x-1/2, -y+5/2, z-1/2; (iv) -x+1/2, y-1/2, -z+5/2; (v) -x, -y+2, -z+2.

Figure S5. Temperature dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibilities at H_{ac} = 2.5 Oe for complex **2** measured without an applied dc field.

Figure S6. Temperature dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibilities at H_{ac} = 2.5 Oe for complex **3** measured without an applied dc field.

Figure S7. Infrared spectra of the complexes 1-3.

In the spectra, characteristic bands at 3423, 2972, 2925, 2079, 1618, 1384, 1116, 857, 627 and 526 cm⁻¹ for **1**, 3431, 2924, 2851, 2136, 1619, 1384, 1116, 836 and 617 cm⁻¹ for **2**, 3421, 3130, 3016, 2962, 2079, 1617, 1400, 1137, 1087, 811 and 628 cm⁻¹ for **3**.

Figure S8. TGA plots of the complexes 1-3